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Abstract—Graph Signal Processing (GSP) provides a powerful
framework for analysing complex, interconnected systems by
modelling data as signals on graphs. Recent advances in GSP
have enabled the learning of graph structures from observed
signals, but these methods often struggle with time-varying
systems and real-time applications. Adaptive filtering techniques,
while effective for online learning, have seen limited application
in graph topology estimation from a GSP perspective. To this
end, we introduce AdaCGP, an online algorithm for adaptive
estimation of the Graph Shift Operator (GSO) from multivariate
time series. The GSO is estimated from an adaptive time-
vertex autoregressive model through recursive update formulae
designed to address sparsity, shift-invariance and bias. Through
simulations, we show that AdaCGP performs consistently well
across various graph topologies, and achieves improvements in
excess of 82% for GSO estimation compared to baseline adaptive
vector autoregressive models. In addition, our online variable
splitting approach for enforcing sparsity enables near-perfect
precision in identifying causal connections while maintaining
low false positive rates upon optimisation of the forecast error.
Finally, AdaCGP’s ability to track changes in graph structure is
demonstrated on recordings of ventricular fibrillation dynamics
in response to an anti-arrhythmic drug. AdaCGP is shown to be
able to identify the stability of critical conduction patterns that
may be maintaining the arrhythmia in an intuitive way, together
with its potential to support diagnosis and treatment strategies.

Index Terms—Graph topology learning, adaptive graph signal
processing, graph shift operator, time-vertex stochastic process,
multivariate statistical models, cardiac fibrillation.

I. INTRODUCTION

N an era of unprecedented data generation, the chal-

lenge of understanding complex, time-varying systems has
become increasingly critical. Much of this data arrives as
simultaneous, long-running time series from diverse sources
including financial markets, environmental monitoring stations
[2], energy grid networks [3]], and biomedical sensors [4].
While often appearing unstructured, these datasets frequently
encode underlying spatiotemporal relationships that can reveal
the underlying system dynamics.

This is particularly evident in complex cardiac arrhyth-
mias, such as Ventricular Fibrillation (VF) and Atrial Fib-
rillation (AF), where chaotic electrical propagation manifests
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An earlier version of the core algorithm was presented in preprint form
[1]. The current manuscript represents a comprehensive advancement with
extended theoretical analysis, synthetic experiments, and a real-world case
study on cardiac fibrillation.

as patient-specific ‘electrophenotypes’ [3]], [[6]. The ability to
capture the electrophenotype and assess its stability holds
crucial diagnostic value, yet current treatments remain xr due
to our inability to characterise these patterns, leading to poor
outcomes and high recurrence rates [5], [7]. The development
of adaptive, data-driven approaches to address this challenge
is therefore essential, both for advancing cardiac fibrillation
treatment and for analysing other complex systems.

Networks/graphs provide a powerful low-dimensional
framework for representing relationships between data sources
[8]l, with nodes representing sensors and edges capturing their
dependencies. When the graph structure is known, various
tools from GSP theory and machine learning can analyse
signals residing on the graph [9]], [[10]. However, in many real-
world scenarios, the underlying graph structure is unknown
and must be inferred from observed data. The GSO, which
can take forms such as the adjacency matrix or Laplacian
matrix, represents this structure by encoding the relationships
between nodes. While existing approaches based on sparse
inverse covariance estimation [11]], signal smoothness [12],
[13], and signal diffusion [[14]|-[16] have shown promise in
learning GSOs, they typically focus on learning variants of
the Laplacian or symmetric matrices, and neglect temporal
dependencies. Also, many applications require learning more
general forms of the GSO, such as the directed weighted
adjacency matrix, that can capture asymmetric relationships
and potential causal connections between nodes.

In the context of time series data, vector autoregressive
(VAR) models are commonly used to uncover a causal
graph representation between the variables, as popularised
by Granger [17]. More recently, GSP methods have been
proposed to learn graph structures from multivariate time
series. For instance, Segarra et al. [18] investigated the joint
identification of graph filters and input signals, and Mei and
Moura [[19] proposed estimating GSOs through an autore-
gressive time-vertex system identification problem. However,
these methods typically operate in a batch processing mode,
which becomes inefficient and impractical when dealing with
streaming data from complex systems where the graph struc-
ture is often time-varying [20]. In such cases, batch processing
would require rerunning the model each time new data arrives,
leading to high computational costs.

Adaptive signal processing techniques are well-suited for
such online learning scenarios. Algorithms like the Least Mean
Square (LMS) [21f], Recursive Least Squares (RLS) [22]f,
and RLS-like LMS variants [23]] provide powerful tools for
learning and tracking time-varying parameters. Recent works
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have introduced online schemes for estimating causal graphs
from sparse VAR processes, such as TISO (Topology Identi-
fication via Sparse Online learning) and its RLS counterpart
TIRSO [24]. While adaptive filtering techniques have been
extended to GSP [25]-[27], current research has focused on
signal estimation and sampling on graphs. The problem of
adaptive graph learning from streaming data remains largely
unexplored.

To address this gap, we leverage time-vertex GSP theory to
learn and track changes in weighted graph adjacency matrices.
Our main contributions are:

1) An online time-vertex adaptive filtering algorithm,
termed AdaCGP, that extends Mei and Moura’s [19]
offline approach for graph structure learning;

2) A variable splitting approach for achieving true sparsity
in online GSO estimation, enabling reliable identifica-
tion of non-zero causal elements and efficient computa-
tion through sparse matrix operations;

3) A rigorous empirical analysis on synthetic data demon-
strating the convergence and superiority of AdaCGP
over adaptive VAR models, with prediction (forecast)
error optimisation enabling reliable hyperparameter se-
lection and GSO sparsity estimation;

4) An application to VF recordings across increasing anti-
arrhythmic drug concentrations to regulate electropheno-
type complexity, demonstrating the ability of AdaCGP to
capture the structure and stability of cardiac fibrillation.

The remainder of this paper is structured as follows. Section
provides background on graph and time-vertex signal pro-
cessing, followed by the formulation of our optimisation objec-
tives in Section [[II| and presentation of our adaptive algorithm
in Section We then validate our approach on synthetic
data in Section [V|before demonstrating its application to real-
world cardiac fibrillation data in Section Finally, Section
V1I| presents our conclusions.

II. BACKGROUND

This section introduces the fundamental concepts of GSP
and presents the Causal Graph Process (CGP) model for cap-
turing temporal and structural dependencies in time-varying
random graph signals.

A. Graph Structure and Signals

A graph G = (V, £) is a mathematical structure that captures
the relationships between a set of entities. It consists of a
set of N nodes, V = {vy,...,un}, and a set of edges, &,
representing their connections. A weight matrix, W € RV*N
encodes the strength and pattern of the edge connections. This
matrix, commonly referred to as the GSO in GSP, has entries
w;; that are nonzero only if there is an edge connecting nodes
i and j, ie., (¢,7) € £. On this structure, a graph signal is
defined as a function f : V — R that assigns a real value
to each node, represented as a vector X = [xq,...,zy]|T €
RN*1 where x,, is the signal value at node v,.

B. Graph Filtering

Graph filtering is a fundamental operation in GSP that
extends classical filtering to the graph domain. A graph filter
is commonly expressed as a polynomial of the GSO, that is

L
HL(W,h) =Y WW! =l + g W + -+ iy W', (1)
=0

where h = [ho, ..., hr]T is a vector of filter coefficients and
filter order L determines the neighbourhood size over which
it operates.

Polynomial graph filters are shift-invariant, meaning that
filtering a shifted graph signal is equivalent to shifting the
filtered signal, i.e., Hp(W,h)(Wx) = W(HL(W,h)x).
This shift-invariant property has two important implications.
First, that the graph filter commutes with the GSO,

[HL(W,h), W] =0, 2

and second, that graph filters commute with each other
[H (W, hi), He (W, hy)] = 0. 3)
Here, the commutator notation [, -] for two operators A and

B is defined as
[A,B] £ AB — BA, 4)

where [A, B] = 0 indicates that the operators commute [9].

C. Causal Graph Process

The CGP is a time-vertex model for random time-varying
graph signals [[19]. It is a special case of the more general
VAR moving average time-vertex model [28]], which expresses
the VAR coefficients as shift-invariant graph filters. The CGP
model is given by

P
xe = Hy(W,hy)xi_p, + wi, (5)

p=1

where x; is the graph signal at time step ¢, H,(W,h,) is an
order p graph filter as defined in (1)), and w, ~ N(0,Iy).

The CGP model is causal in the sense that the signal at
a node at time ¢ can only be influenced by its P-hop neigh-
bourhood from the previous P time steps. Mathematically, this
is reflected in the order of the polynomial coefficients being
bounded by the lag p, p=1,...,P.

This structure models information propagation through the
graph at a fixed speed (one graph shift per sampling period).
While more general formulations that decouple the polynomial
order from the time lag are more expressive [28], the CGP
model’s coupled temporal and spatial dependencies provide
a tractable framework for graph learning [19]. The sampling
frequency of discrete-time models can also be chosen to align
with the propagation speed, making this assumption rather
reasonable in practice.

Remark 1. The CGP model is inherently weakly stationary
due to its formulation as a sum of shift-invariant graph filters
(as defined in [29]). While stationarity assumptions enable
the definition of meaningful optimality criteria for filter de-
sign, real-world scenarios often involve non-stationary signals
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and time-varying graph structures. This motivates adaptive
approaches that can track gradual changes through recursive
optimisation of these criteria.

III. OBJECTIVES FOR ONLINE OPTIMISATION

Having established the CGP model structure, we now ad-
dress the problem of parameter estimation. The CGP model
in (3) can be formulated as a multivariate linear regression
problem for estimating W and h,, for p = 1,..., P, where
the Mean Square Error (MSE) is the optimal linear estimator
[30]. In this work, we adopt the least squares method, a
deterministic counterpart of the MSE estimator [21]]. Specifi-
cally, we employ the RLS-like LMS scheme [23]] for recursive
optimisation. This approach incorporates a forgetting factor A
into the LMS objective and has been shown to achieve fast
convergence and tracking performance similar to RLS while
being more numerically stable, as it does not involve matrix
inversion. The least squares problem of (3)) is formulated as
2

P
X, — Z H,(W,h,)x,_,

p=1

(V)

t
. 1 t—r
min 5 Z_f

where h = [hY ... hL]T € RM*! with M = P(P + 3)/2,
x, = 0 for 7 < 0, and A € (0,1]. It is important to
note that (6) represents a non-convex optimisation problem
due to the polynomial in W. To address this, we follow
the approach proposed by Mei and Moura [19] and cast
the problem into alternating steps of convex regularised least
squares sub-problems.

2

A. Solving for ¥, = H,(W,h,)

The optimisation objective is first reformulated to solve
for ¥, = H,(W, h,) instead of W and h directly, where
we denote our estimate as \ilp This transformation makes
the problem quadratic in ¥,. Upon incorporating sparsity
regularisation, we arrive at the following optimisation problem

1 P
. tf
n}I}n 3 E AT x, — E WX, p
=1 p=1

P
+ > ppllvec(¥y)lly,
p=1

2

2 )

where U = [¥y,...,¥p] € RV*NF jg a concatenation of the
P graph filters, vec(-) is a vectorisation operator that stacks
the columns of the matrix it acts on, and || - ||, is an £; norm,
while (i, is a constant which adjusts the degree of sparsity of
the corresponding \ilp.

To enforce that graph filters are shift-invariant, a soft
constraint is added

1< ’
: - § )\t—T
“}I}n 2 r=1

P
X, — E WX _p
p=1

2 ®)

P
+ Z ppllvec(¥p)l, + Z [, 7,
p=1 i

where the additional term, weighted by +, enforces the graph
filters to commute as defined in (3). This formulation results
in a quartic programming problem. However, as noted in [[19],
the objective is multi-convex and naturally leads to block
coordinate descent as a solution, despite not being optimal
in MSE. In other words, when all ¥; except for ¥; are held
constant, the problem becomes a convex optimisation in ;.

B. Estimating W from \ill

From the definition of the graph filter in (I), ¥, is a
linear function of W. Its estimate, ¥, therefore provides
a reasonable (yet biased) approximation of W. However, to
determine the true W after obtaining ¥ from (7) or (§), the
following regularised least squares sub-problem is used

.1 2
min o[ — W+ g lvee(W) |,

2 L9 ©)
+7 ) IW )

p=2

where the final term enforces the shift-invariant property in (2))
by ensuring that W commutes with all \i'p.

When @]) is used to calculate \ill, the optimisation sub-
problem in (@) may be bypassed by the approximation W=
¥,, since the shift invariance property has already been
enforced. We denote this latter variant of our algorithm as
Path 2, which is detailed further in subsequent sections.

C. Estimating h

Upon estimating W, we can re-frame the initial objective
in (6) as a quadratic optimisation with respect to h. Assuming
sparsity in h, we can substitute (I)) into (6) and rearrange to
give

t

1 .,

min 5 3Nk, = Yol +lhl, (0)
T=1

where 1 controls for the degree of sparsity and

(1)

The dimensions of Y; are N x M, where M = P(P+3)/2.
Despite the apparent size of M, practical applications often
involve a much lower order, frequently satisfying M < N. It
is important to note that this step, while informative, is not
critical to our primary goal of recovering W.

A x7P
Yt = |:Xt_1,WXt_1, ey Xt— Py ,W Xt_p:| .

IV. ONLINE ESTIMATION ALGORITHM

We introduce AdaCGP (Adaptive identification of Causal
Graph Processes), an algorithm designed to achieve sparse
online solutions to the objective in (6). While existing online
methods such as /¢;-regularised LMS [31]] and oracle algo-
rithms [32] achieve low MSE, they rarely produce truly sparse
solutions compared to offline methods like basis pursuit [33]].
This is an important limitation in our context for estimating
W, since sparsity directly determines the presence or absence
of edges in the graph structure, driving a causal interpretation.



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

To overcome this issue, we adapt the offline variable split-
ting approach of Schmidt et al. [34]] to the online objec-
tive in (6), reformulating the alternating ¢;-regularised sub-
problems in (8) and (9 by splitting the target variables (\If
and W) into their positive and negative components as

vEY, -0, (12)
WAW, -W_, (13)
where ()4 > 0 and (-)_ > O contain only the positive and

negative parts of (-), respectively. The ¢;-norm can then be
expressed as a product-weighted sum. For the matrices ¥ and
W, this is given by

1@, = Tr (1NxN\i:+) +Tr (1NxN\iL) ,
W, = Tr <1NxNVV+> T (1NxNW,)

where Tr(-) is the trace operator and 1yxy € RV*Y is a
matrix of unities.

These reformulations convert our first two sub-problems
into non-negativity constrained optimisations [34], which we
solve via projected stochastic gradient descent using the re-
cursive update formulae we derive next.

Remark 2. The variable splitting approach in and
offers potential for incorporating prior knowledge about the
GSO structure. For example, when the GSO represents an
adjacency matrix (elements in {0, 1}), setting U_=W_=0
naturally enforces this constraint as an inductive bias. While
Laplacian matrices could be split into their positive diago-
nal and negative off-diagonal elements, their zero row sum
proves challenging to maintain iteratively without resorting to
Lagrangian methods. To maintain generality across different
GSO structures, we follow the approach in [19)] and study the
unconstrained case.

A. Updating ¥,

To minimise at time instant ¢, we calculate its gradient
with respect to the positive part of each p*" block of the graph

filter \ifp, ie. (\Ilp)+, which is given by
¢ P
(t) _ t—7 T T T
V(\il,,)+ = 7521 A (kgl Wt 1Xr—kXr_py — XTXT_p>

+ pptInxn +7Qpt,
(14
where the gradient of the commutative term is given by

P

Qpi+1 = Z ([\i’p,t7\i’k,t:| ‘i’zt - ‘i’zt [‘i’p,m‘i’k,tD )

k#p
15)
where we use ()¢ to denote variables () at the time instant
t. We define ¥, M;, and Q; as the concatenation of graph
filters, sparsity and commutative terms over all P, given by

‘i’t £ \iIl,t7\iI2,t7'“,‘i’P,t:| = ‘i’_;” 7¢'-t7

M; £ (1IN g Ny 2,0 LNk N ooy Pt LN v ]

and

Qt [Ql t7Q2 ty .- '7QP,t}7

where ¥, is expressed as the difference between its positive
and negative parts, as in (12), and ¥;, M, and Q; are matrices
in RN XN P'

Next, we use R, € RVPXNP o denote the accumulated
correlation matrix of the lagged input signals, and P; €
RYXNP to denote the accumulated cross-correlation matrix
between the input signals xp; and the desired responses x;,
where

T
T } c

NPx1
Xi_p R .

21, T T
Xpt = [Xt—laxt—Zv cey
We can now write the recursive update formulae to R; and
P, as

t

A t—T1 T T
R; = g ATTxp xp . = ARi-1 + XpiXpy,

T=1
and
t
A t— T T
P, = E AT xXp = AP+ XiXp
T=1

These expressions are then substituted into (I4) to give

) ® |2y
G2 [V VG [ 28 R - (P -9Q), (16)
where it can be shown straightforwardly that v =yl
() (Fp)+

and V(f) ) V(t)

F1na11y, we can now express the updates to our first sub-
problem as a gradient projection, that is

= (T - (M 4+ G (A @ L))

for all p.

where A; = diag(ay,ag,...,ap) € RFXP is a diagonal
matrix of stepsizes for each filter block. Similarly, the update

equation for \il,t can be obtained as

b = (o, - (M- G)(A @ Tnaw)) |

Then, finally U, = \ih” — \il_t

Having derived the update equations for WU,, we next
analyse the computational complexity per iteration. The cost
is dominated by the gradient calculation in (16). Computing
¥, R, and Q, requires O(NN3P?) operations in the dense
case. Since our algorithm explicitly zeros out elements of U,
sparse matrix operations could be used. With S, = ||¥,]|o
total non-zeros and S}, ; = max, H‘i’p,tHo maximum non-zeros
per block at time ¢, the complexity reduces to O(S;—1 N P)
for ¥, 1R, and O(S2, P) for Q. Since S;_; < N?P,
Spit—1 < N2 and S;—; > Sp,; 1, the total complexity
simplifies to O(S;_1 N P), which scales more favourably for
large data applications.

can be set.

B. Updating W,

The next step of our algorithm involves recovering the GSO,
W,, from ¥, through either of two paths. Path 2 provides
a simple but biased estimate by setting W, = ¥, .+ Path
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1, which we detail below, optimises (J) to obtain unbiased
estimates of W at the expense of computational complexity.

In Path 1, we simplify (I6) in the first sub-problem by
setting Q; = 0 for all time steps ¢. This makes the first
sub-problem convex by deferring the enforcement of shift-
invariance to this phase 1nstead To optimise (@), the variable
splitting approach from is followed to express Wt as the
difference between its posmve and negative parts. Computing
the gradient of @) with respect to the positive elements of W,
gives

V=W, | — (‘i’l,t —7St), (17

where the gradient of the commutative term is given by

-t - - - T T Toa -
S = ([Weor W[ 9y, =9y, [Wer, 8] ) - (1)
k=2
The parameter updates can again be expressed as gradient
projections

W+t = <W+t—1 - 6t(ﬂ1,t1NXN +Vt)>+7

and

W_, = (W—t,l — Be(pielnsn — Vt))+,
where 3, is the stepsize, and p; . is the sparsity parameter
from the first sub-problem. Then, W, = VAVJ” — VAV_t.

The computational complexity for updating W, varies
between paths. While Path 2 requires O(N?) operations for
direct assignment of W, = \Ill +» Path 1 has higher complexity
of O(N3P) due to the computation of the commutative term
S; in the dense case. However, when matrices W and \Ilk are
sparse in , Path 1 complexity can be reduced to O(Sg_’t ),
where S’p,t is as defined previously.

Algorithm 1 summarises our derived adaptive algorithm for
learning W,. Path 1 ignores Step 9 by setting Q, = O,
executing only Step 18 to account for shift-invariance. Con-
versely, Path 2 includes Step 9 but skips Steps 18-22, directly
assigning W, = ¥, ; instead. These two paths will be tested
experimentally in subsequent sections.

C. Estimating hy

To fully identify the CGP model in (@), the graph filter
coefficients h; remain to be estimated. This phase is optional
since the primary objective of this work is to estimate the GSO
structure. Notice that, W must be debiased before estimating
h;, due to the heavy regularisation involved. Debiasing is
performed by fixing and optimising only the non-zero elements
of W, using least squares. Note that reducing the sample
size in this way can risk distorting the noise distribution
from normality, potentially compromising the minimum MSE
criterion for noisy or small datasets [35].

After debiasing Wt, the filter coefficients flt are estimated.
Unlike zeros in the GSO, which indicate absence of edges and
thus have causal significance, sparsity in h serves mainly to
simplify the model structure. Given the more relaxed sparsity

Algorithm 1: Identifying the topology of W (W)

Input : x, P
Output: \Il W*
1 Initialise \Iio \II+O =V ,=Py=Q, =0,
WO—W+D WfO =8S; =0and Ry = 0;
2 t=0;
3 do
4 t=t+1;

5 Solving for \ilt;
T ]T,

6 Xpit = [xz—;lvxz—;27 s Xt p

7 R: = Ri- 1+thx£t,

8 Pt—)\Pt 1+XtXpt

9 Q: = [Q1,t, Qayt, ... ,th} with Qp,+ according to .
10 calculate pu¢;

11 M, = LMLthxN,uz,thxN,-..,MP,thxN];

12 G =¥, 1R; — (P —vQu);

13 calculate Ay;

wo| By, = (T - (M4 Go)(A ®INxN))+;
15 U, = (\Il,t L= (M =Gy (A ® INXN))+;
16 U, =¥, -V _,;

17 Estimating Wy

18 St according to ;
19 Vi=W;_1— (\Ifl,t — ’)/St)§

20 W, = (VAVﬂ_1 — Be(p1lnxn +Vt)>+;
\ )

21 W_, = (Wﬂ,l — Be(p1,t1nxn — Vi)
2 W, =W,, - W_,;

bl

+

23 while ¢ < T™ (an epoch with steady-state reached);
u ;W =W,

requirements, GAR-LMS [33] is employed to arrive at the
recursive update equation of h, given by

flt = ljltfl + pt (Ctﬁtfl —u + 77tbt) ) (19)

where
C; = 2G4 +YtTYt,
= Ay + YtTXu
sign B-,t,l
b; : bi,tzi(AZ )7
€+ hi—1
where Y, contains the lagged graph shifted signals as in (11)),
C; € RMXM tracks correlations between the shifted signals,
u; € RM accumulates cross-correlations with the desired
response, b, is the sparsity-promoting re-weighting vector, p;
is the stepsize, and e prevents division by zero. This step could

be further simplified by only taking the instantaneous samples
into (T9), that is, A = 0, to yield

hy=h, | + Pt (YtTet + ntbt)

where .
—Y:h;_;.

€ = Xy

Algorithm 2 summarises our derived adaptive algorithm for
debiasing W; and estimating h;. The cost of the debiasing
phase is dominated by the term ¥, _; R, which has complexity
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O(N3P?) in the dense case or O(S;_;NP) with sparse
operations. The cost of updating h, is dominated by computing
Y?Y;, requiring O(N P*) operations for Y; € RV*M with
M = P(P+3)/2. While appearing formidable, P is typically
much smaller than N, so this update is unlikely to be the
computational bottleneck in the overall algorithm.

Algorithm 2: Determining the unbiased W and h

Input :x, P, ¢
Output: W, h
1 All recursive variables resume from Algorithm 1;
2 t=T%;
3 do
4 t=t+1,

5 Debiasing Wt;

6 R: =) Ri-1 + XP,thz;

7 P, = APi_1 +XeXp s

8 ¢ = (\i!t_lRt — Pt) . where (-) is the projection
W

to non-zero elements of ¥ considering w;
9 calculate Ay;

10 v, :\I’tjl —(;rt(Az(X)INxN);
1 Setting Wy = ¥, 4;

12 Estimating h;

13 Y: = Xt71,VAVtXt71,.,.,thp,...,VAVf)xt,p];
14 €t = Xt — thltfﬁ

15 by : by, = Sk,

o'+ihr,i‘t

16 flt = flt—l + pt (YtTet + ﬁtbt);

17 while ¢ < T (a terminal epoch);
18 W=W;p, h=hr

D. Tuning Hyperparameters

Our algorithm requires tuning several hyperparameters: reg-
ularisation constants gy = [f1.4, fo.¢, ...7[Lp7t]T, e, v and €;
stepsizes A;, f; and p;; and the forgetting factor .

Prior knowledge can guide many of these selections. For
example, the ¢;-norm related constants, following [36], we
set

ot = PpllPpt — 7Qp,ell o
=Y x|

where P,; is the p-th block of P;. Step sizes can be
determined using Armijo line search [37] or adaptive signal
processing theory for stable convergence. The entries of p
could decrease with p to reflect the decreasing sparsity of
higher-order graph filters in (I). The forgetting factor A should
be close to 1 to balance adaptability and stability. However,
parameters 77 and ~ are rather unconstrained and require
empirical tuning.

E. A Note on Convergence

A rigorous convergence analysis for CGP identification is
presented in [19]. However, the assumptions for successful
convergence are quite restrictive, requiring both specific spar-
sity structures (Assumption A5 in [[19]) and strong stability
conditions (Assumptions A4 and A6 in [19]). Attempts to

relax these assumptions have had limited success, partly due
to inherent biases in the base problem (8)). For instance, the £;-
norm regularisation tends to underestimate non-zero elements
[36], and the commutator term adds further complexity.

Given these theoretical limitations, we complement our
analysis with empirical convergence metrics. Specifically, we
evaluate precision, recall, and F1 scores for identifying non-
zero elements in W, independent of their exact values.

V. EXPERIMENTS ON SYNTHETIC DATA

To assess the performance and convergence characteristics
of our algorithm variants across different graph topologies, the
Normalised Mean Square Error (NMSE) was utilised as the
primary metric to assess the convergence of three key aspects
of our model: the prediction error from the estimated graph
filter,

e — Wy _1xp. 3
NMSEGe) =
2

the prediction error from the estimated graph filter coefficients,

x: — Yehy 1|3

. (20)

NMSE(x}) = 5 , (21)
%213
and the error in the estimated GSO matrix,
W — W7
NMSE(W) = ; (22)
W%
where (-) denotes the estimated parameters and || - || is

the Frobenius norm. Additionally, we evaluate convergence
through precision, recall, and F1 scores for the classification
of non-zero elements in W, and report the missing rate (Pyy)
and false alarm rate (Prj4) of edges once the model is in
steady-state.

A. Data Generation

The AdaCGP algorithm was evaluated across four graph
topologies: random (R), Erd6s-Rényi (ER) [38[], K-Regular
(KR), and Stochastic Block Model (SBM) [39]], each with
N = 50 nodes. The random graph weights were drawn from
N(0,1), thresholded between 0.3wpyax and 0.7wWmax (Wmax
being the maximum absolute weight), and normalised by 1.5
times the largest eigenvalue. For the ER graph, edges from
N(0,1) were thresholded between 1.6 and 1.8 in absolute
value (pgr ~ 0.04), soft thresholded by 1.5 to range between
0.1 and 0.3, and normalised by 1.5 times the largest eigen-
value. The KR graph assigned 3 nearest-neighbor connections
per node with weights from ¢/(0.5,1.0), normalised by 1.1
times the largest eigenvalue. The SBM graph comprised k =
10 equal-sized clusters, with intra-cluster connection proba-
bility 0.05 and inter-cluster probabilities uniform in [0, 0.04].
Edge weights were sampled from a Laplacian distribution with
rate A, = 2, normalised by 1.1 times the largest eigenvalue.

Following [19], we set model order to P = 3 and generated
sparse filter coefficients h;; (2 < ¢ < P, 0 < j < 4) from
217k ~ 0.5U(—1,—0.45) + 0.5U(0.45, 1), normalised by
1.5 for stability. Graph signals, x; € RV*!, were then gener-
ated recursively from with x;<p = 0 and w; ~ N(0,1Iy).
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Fig. 1. Convergence of AdaCGP variants on the K-Regular topology in NMSE
(xw, Xp, W) and the metrics for classification of non-zero elements in W
(Precision, Recall, F1). Vertical dashed lines indicate debiasing onset.

From 10,500 generated samples, we discarded the first 500 to
account for transitory effects and retained 10,000 for analysis.
After hyperparameter optimisation, this process was repeated
20 times to construct Monte Carlo estimates of our metrics
and parameters.

B. Estimators: AdaCGP Variants and Baseline Models

We evaluated four AdaCGP variants defined by two design
choices: which implementation of Algorithm 1 (Path 1, P1, or
Path 2, P2), and when to apply Algorithm 2 (after Algorithm 1
reaches steady-state or in alternation at each time step). These
variants were: 1) AdaCGP (P1 w/ debias), 2) AdaCGP (P1 w/
alt debias), 3) AdaCGP (P2 w/ debias), and 4) AdaCGP (P2
w/ alt debias).

Steady-state detection was used to perform early stopping of
Algorithms 1 and 2. It utilises exponential moving averages of
the observable metrics NMSE(xy) and NMSE(x},), denoted
as at(l) and 0152) respectively, where o; = aoi—1 + (1 —
a)NMSE; with o = 0.995. Steady-state is reached when the
moving average fails to improve by 1% within 250 epochs.
For Algorithm 1, we monitored at(l) convergence to control
the switch to Algorithm 2, as at this stage h may not be mean-
ingful due to bias in W. For Algorithm 2, at(Q) convergence
determines early stopping and defines the terminal epoch. For
alternating debiasing, only 0152) is monitored.

Hyperparameter optimisation for each variant used a ran-
dom grid search over 10,000 trials, sampling elements of p

TABLE I
PERFORMANCE COMPARISON OF ADACGP VARIANTS AND BASELINE
MODELS (TIRSO, TISO) IN STEADY-STATE FOR THE K-REGULAR
TOPOLOGY. VALUES SHOW MEDIAN 4 INTERQUARTILE RANGE ACROSS
TRIALS. BEST RESULTS ARE SHOWN IN BOLD, AND SECOND-BEST ARE
UNDERLINED.

Method NMSE(W) Py Pra

TIRSO 0.79 £ 0.02 0.00 + 0.00 1.00 £+ 0.00
TISO 0.78 £ 0.02 0.00 &£ 0.00 1.00 £ 0.00
P2 w/ alt. debias 0.51 &+ 0.02 0.02 £ 0.01 0.61 £ 0.03
P2 w/ debias 0.33 £0.02 0.01 £0.00 0.53 & 0.10
P1 w/ alt. debias  0.21 +£ 0.04 0.01 £ 0.01 0.00 + 0.00
P1 w/ debias 0.14 = 0.02 0.00 £ 0.00 0.01 + 0.02

uniformly from (0.001, 1],  from (0.005, 0.1] with step 0.005,
~ from (0.05, 2.0] with step 0.05, and A from (0.80-0.99] with
step 0.01. The best parameters were selected by minimising
the average of NMSE(x,) during the final patience epochs of
steady-state.

We benchmarked against TISO and TIRSO [24], sparse
adaptive VAR models that track time-varying causality graphs
online using LMS and RLS approaches, respectively. Unlike
our method, these baselines do not model structural depen-
dencies between parameters, like shift-invariance. In these
cases, graph topology estimates W, are derived from the
notion of VAR causality [24], where element (7, j) is causal
if 2521 IL(\II,%-’) # 0) > 0, with weights assigned to causal
edges as W;; = |[|¥;;]|2 - causal;;. For TISO, the sparsity
hyperparameters span (0.025, 1.0] with step 0.025, while
TIRSO additionally samples forgetting factors from (0.80-
0.99] with step 0.01, optimising for minimal steady-state
prediction error NMSE (xy ).

To ensure optimal convergence, all models employed an

adaptive step size oy (with Ay = a4Ip), computed as
2 1
ap = . ,
¢ /\max(Rt) HXRtH% +e

where € ensures numerical stability. Other stepsizes 5; and p;
were calculated using the Armijo rule for automatic selection.

(23)

C. Convergence Across Graph Topologies

Fig. (1] shows the convergence of our metrics for the KR
topology as a representative example. All models converge
to low non-zero values for NMSE(xy) and NMSE(x, ), with
Path 1 achieving lower errors than Path 2. The NMSE(x},) for
Path 1 showed significant improvement post-debiasing, and
achieved near-zero NMSE(W). While alternating debiasing
converged to slightly higher values than steady-state debiasing,
it demonstrated faster convergence in NMSE(W) for Path 1.

The considered methods exhibited distinct differences in
Precision(W), with Path 1 maintaining near-perfect precision
(=1.0) compared to Path 2’s plateau around 0.2. All variants
achieved high Recall(W) (=1.0), though Path 2 showed faster
initial increases. The F1 scores strongly favour Path 1 (=1.0
versus ~0.4), with the alternating debiasing variant showing
marginally better precision due to its iteration-by-iteration
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Fig. 2. GSO matrices across four graph topologies: (a) Random, (b) Erdds-Rényi, (c) K-Regular, and (d) Stochastic Block Model. For each _topology we
show: true GSO W (left), mean estimate Mean(W') over 20 realisations (middle), and most commonly estimated non-zero elements Mode(W # 0) with
highlighted true positives and false negatives (right). Results shown for the best-performing AdaCGP variant based on steady-state NMSE(xp, ).

approach providing greater robustness to noise and misspeci-
fication of non-zero elements upon entering Algorithm 2.

As shown in Table [, the AdaCGP variants consistently
outperformed the baselines. The AdaCGP (P1 w/ debias)
achieves an 82% reduction in NMSE(W) compared to TISO
(0.1440.02 versus 0.78+£0.02) and a 58% reduction compared
to P2 w/ debias (0.33 £ 0.02). Notably, Path 1 variants
maintained near-zero false alarm rates (Prpa < 0.01) while
achieving minimal missing edge rates (Py; < 0.01), in contrast
to baseline models’ Pr 4 of 1.00 and Path 2’s Pr 4 exceeding
0.50. The baseline models’ Ppr4 of 1.00 reflected their spar-
sity mechanisms’ inability to explicitly set elements to zero,
while our variable splitting approach overcame this limitation,
effectively identifying and removing irrelevant edges for an
improved Pr4 and Py, trade-off.

D. Identification of the GSO Topology

Fig. [2] compares the true and estimated GSO matrices across
the R, ER, KR, and SBM topologies. For each topology, we
show the true GSO W alongside the mean estimate over 20
realisations, Mean(W), from the best-performing AdaCGP
variant (based on lowest steady-state NMSE(xp,)). While there
is some bias in the estimated element values, particularly in the
KR topology, the relative edge weights and overall structure
were well preserved.

A comparison of the most common non-zero elements over
realisations, Mode(W # 0), to the true elements in W
reveals no false positives as the most frequent outcome, with
minimal false negatives. This demonstrates the effectiveness
of AdaCGP’s sparse algorithm in explicitly zeroing out GSO
matrix elements while identifying most of the true edges.

E. The Effect of Sparsity Regularisation on Performance

To investigate how estimated network sparsity relates to
NMSE(x},), a practical metric for hyperparameter tuning that
does not require knowledge of the true network structure, we

1.0
0.8 4
I 0.6 1
W
g A o4
4
0.2 4
0.0 4
1.0
0.8
<
I:j 0.6
2 &
= 0.4
z
0.2
0.0 4
1.0
0.8
=
I:j 0.6
@ &
s 0.4
z
0.2 4
0.0 4
1.0
081 |
Iy
o 0.6
2
s 0.4 4
0.2
Op
0.88 [ o508
Hogpo o © 0.0
10° 10! 10? 10% 0.00 025 050 075 1.00
Non-zero elements Ppy
o AdaCGP (P1 w/ debias) a— AdaCGP (P2 w/ debias)

—a— AdaCGP (P1 w/ alt debias) —a— AdaCGP (P2 w/ alt debias)

Fig. 3. Performance of the AdaCGP variants for different graph topologies: R,
ER, KR and SBM. Left column: NMSE(xy,) vs. estimated non-zeros in W.
Vertical dashed lines indicate the true number of non-zeros. Right column:
Probability of missing edges (Pps) vs. probability of false alarm (P 4).
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experimented with varying the sparsity regularisation strength.
Using the best-performing hyperparameters from the AdaCGP
variants from before, we randomly sampled elements of p
uniformly from (0.001, 1] across 5,000 trials per model variant
and different graph types with N = 50 nodes.

Fig. [3| shows the NMSE(x}y) versus non-zero elements
in W (left column) and P,; versus Ppa trade-offs (right
column), where the x-axis has been uniformly binned and
median results displayed. As expected, increasing sparsity reg-
ularisation reduces the estimated number of non-zero elements
and increases Pys. Path 1 variants minimised NMSE(x},) near
the true sparsity level, while Path 2 variants overestimated the
number of non-zero elements. Path 1 consistently achieved
lower NMSE(x},) and superior Pp-Pr4 trade-offs across
all topologies, exhibiting near-perfect performance with very
low Pp; and Pp 4. These results demonstrate that optimising
NMSE(x,) for Path 1 variants leads to accurate network
sparsity estimation and thus improved causal discovery.

VI. ASSESSING THE STRUCTURE AND STABILITY OF
CARDIAC FIBRILLATION

While existing applications of Granger causality to fibrilla-
tion dynamics [40] use batch processing to capture average
propagation patterns, our online algorithm tracks temporal
changes in GSO weights and causal structure. This enables
assessment of propagation patterns and their stability at both
global and local levels, having the potential to inform clin-
ical evaluations of the electrophenotype, where propagation
appears chaotic yet maintains quantifiable structure [41]]-[43]].
Such dynamic assessment could identify the stable conduction
patterns maintaining arrhythmias, directly supporting diagno-
sis and treatment strategies.

To demonstrate these capabilities, we analysed optical map-
ping data of VF from an ex vivo Sprague-Dawley (SD, Charles
River, Harlow, UK) rat heart during sequential administration
of rotigaptide at concentrations in micromolar (xM), an anti-
arrhythmic drug shown to induce more organised dynamics
[43]. All procedures were performed in accordance with the
UK Animals (Scientific Procedures) Act 1986 and ARRIVE
guidelines, and were approved by the Imperial College London
Ethical Review Board (project licences PEE7C76CD and
PCASEE967). Animal procedures conformed to guidelines

Rotigaptide dose = 0 uM

Out - In Degree

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Time in steady-state [s]

Rotigaptide dose = 50 uM

[ Source

Out - In Degree

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
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Fig. 5. Local stability analysis of fibrillation dynamics. Net edge directions
at steady-state start (¢ = t*) and end (¢ = T*) for VF (0 uM, top)
and rotigaptide 50 pM (bottom). Colour and arrow length denote edge
weights. Time series show Out-In Degree for circled region during steady-
state, demonstrating alternating source-sink behaviour in VF versus stable
source characteristics at 50 uM.
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from Directive 2010/63/EU of the European Parliament on
the protection of animals used for scientific purposes. Rats
were anaesthetised with 5% isoflurane (95% oxygen mix) and
euthanised via cervical dislocation prior to heart explantation.

The experiment records fluorescence signals proportional to
cardiac action potential using a 128 x80 pixel camera at 1000
Hz. Recordings span 10s during administration of rotigaptide
in concentrations of 0, 10, 30, 50, and 80 uM, where zero
represents baseline VF. After following the preprocessing
steps in [43]], we downsampled the spatial resolution by a
factor 4 to ~350 nodes and extracted Hilbert phase angles
as graph signals x;, which capture each region’s position in
its oscillatory cycle.

AdaCGP (P1 w/ alt debias) is deployed with gradients
constrained to adjacent pixels to reflect the local connectivity
of cardiac tissue. The model uses parameters P = 3, v = 1,
n = 0.01, elements of g as 0.1, and A = 0.5, with low
forgetting factor enabling rapid adaptation. Stepsizes were
calculated using the Armijo rule for automatic selection.

Fig. M) reveals three aspects of global stability. First,
NMSE(xy) showed lower steady-state errors with increasing
rotigaptide concentrations, suggesting more organised and pre-
dictable dynamics consistent with the drug’s anti-arrhythmic
nature [44]]. Second, Frobenius norms between successive
GSOs (W (t) and W (t+0.1s)) exhibited lower median values
and less variability at higher concentrations, indicating more
stable global dynamics. Finally, mean Frobenius norm error
increased more gradually with time lag at higher concentra-
tions compared to VF (0 M) and low concentrations, further
supporting enhanced global stability with increased rotigaptide
concentration.

Fig. [5] demonstrates local stability through edge patterns at
the start (¢*) and end (1) of steady-state. During VF (0 uM),
the magnitude and direction of net edges varied considerably
between t* and T, indicating unstable propagation patterns.
The highlighted region’s Out-In Degree (3_; Wij > Wij)
fluctuated significantly between positive (source) and negative
(sink) values, further demonstrating this instability. In contrast,
at 50 M, edge magnitudes and directions across time points
remained largely consistent, suggesting more stable propaga-
tion patterns. This stability is quantified by the highlighted
region’s behaviour, which maintains consistent source char-
acteristics with minimal Out-In Degree variations that are
significantly lower than during VE.

VII. CONCLUSION

We have developed AdaCGP, an online time-vertex adaptive
filtering algorithm for tracking time-varying causal graph
structures in multivariate time series. Our approach introduced
a variable splitting approach for sparse adaptive filtering to
efficiently identify the GSO in real-time and reliably esti-
mate its causal elements from streaming data. Experiments
across various graph topologies have demonstrated AdaCGP’s
superior performance over existing adaptive VAR models in
both prediction accuracy and graph structure recovery. Path
1 variants have showed particularly strong performance in
causal discovery while maintaining low false positive rates,

with prediction error minimisation proving effective for hyper-
parameter tuning and accurate sparsity estimation. Application
to rat VF data revealed AdaCGP’s potential for analysing
complex cardiac arrhythmia. The algorithm has successfully
tracked changes in cardiac organisation under varying rotigap-
tide concentrations, providing insights into the structure and
stability of fibrillation at both global and local levels. Upon
further trials in humans, this approach could help identify
critical mechanisms sustaining the disorder, paving the way
for personalised treatment strategies and potentially improved
outcomes. Future developments could extend our framework
to non-linear adaptive filtering and incorporate domain-specific
GSO constraints through our variable splitting approach. Such
extensions could improve the modelling of non-linear dynam-
ical systems, such as cardiac fibrillation, where non-linear fil-
ters could better capture the chaotic dynamics and constrained
GSOs, like the anisotropic Laplacian or energy-preserving
shift operators [45]], would more closely align with established
physical models of cardiac conduction [46]. Overall, this work
provides a principled and efficient framework for tracking
evolving causal relationships in streaming data, bridging the
gap between GSP theory and adaptive signal processing for
real-time graph structure learning.
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