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Improving Diffusion Models for ECG Imputation
with an Augmented Template Prior
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Abstract—Pulsative signals such as the electrocardiogram
(ECG) are extensively collected as part of routine clinical care.
However, noisy and poor-quality recordings are a major issue
for signals collected using mobile health systems, decreasing the
signal quality, leading to missing values, and affecting automated
downstream tasks. Recent studies have explored the imputation
of missing values in ECG with probabilistic time-series models.
Nevertheless, in comparison with the deterministic models, their
performance is still limited, as the variations across subjects
and heart-beat relationships are not explicitly considered in
the training objective. In this work, to improve the imputation
and forecasting accuracy for ECG with probabilistic models,
we present a template-guided denoising diffusion probabilistic
model (DDPM), PulseDiff, which is conditioned on an informative
prior for a range of health conditions. Specifically, 1) we first
extract a subject-level pulsative template from the observed
values to use as an informative prior of the missing values, which
personalises the prior; 2) we then add beat-level stochastic shift
terms to augment the prior, which considers variations in the
position and amplitude of the prior at each beat; 3) we finally
design a confidence score to consider the health condition of the
subject, which ensures our prior is provided safely. Experiments
with the PTBXL dataset reveal that PulseDiff improves the
performance of two strong DDPM baseline models, CSDI and
SSSDS4, verifying that our method guides the generation of
DDPMs while managing the uncertainty. When combined with
SSSDS4, PulseDiff outperforms the leading deterministic model
for short-interval missing data and is comparable for long-
interval data loss.

Index Terms—mHealth, time-series, probabilistic imputation,
conditional diffusion models, condition augmentation

I. INTRODUCTION

The advent of wearable technology in mobile health
(mHealth) has enabled passive real-time monitoring of per-
sonal health through recordings of physiological signals.
Among these mHealth systems, pulsative signals such as elec-
trocardiogram (ECG) [1], [2], photoplethysmography (PPG)
[3] and blood pressure [4], are extensively collected since their
close relationship with the health conditions of both cardio-
vascular and circulatory system. However, in comparison with
clinical monitoring systems, a major challenge in mHealth
systems is the missing and corrupted values, for example due
to poor contact with the electrodes during the recording of the
ECG. Such issues can disrupt these recordings and deteriorate
the performance of health monitoring algorithms.
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Recently, to promote the development of imputation meth-
ods for pulsative signals in mHealth systems, PulseImpute
[2] has formulated a benchmark task where the ECG signals
suffer two popular missing patterns in real life: transient (short-
interval) missing values due to information packet loss; and
extended (long-interval) missing values due to connectivity is-
sues. PulseImpute provides a comprehensive study of existing
deterministic methods, and establishes a strong baseline with
an innovative transformer-based solution. Especially, it explic-
itly illustrates the difference between pulsative signals and
other time-series data: 1) pulsative signals have quasiperiodic
structure with specific morphologies, e.g., the QRS complex in
ECG; 2) the specific morphologies vary over time and across
populations, e.g., different morphologies shown by healthy
subjects and patients. The first observation indicates that a
pulsative signal is usually composed of different but similar
repeating waveforms. Moreover, the second observation shows
that the variances between these waveforms could be caused
by diverse factors, such as subject age, gender, health condi-
tion, and the time of recording. However, during the imputa-
tion of pulsative signals, this additional information is usually
unknown and the prediction only depends on the observed
signals. As a result, deterministic methods for the imputation
task may perform sub-optimally without this additional context
information.

Recently, in comparison with deterministic prediction, prob-
abilistic generative models, e.g., denoising diffusion proba-
bilistic models [5]–[7] (DDPMs, diffusion models for short),
have been popularly used in various tasks because of their
superior performance in generation quality [8], [9] and mode
coverage [6], [10]. Generally, diffusion models are composed
of two processes and a model training stage: 1) a forward
process adds Gaussian noise on data samples to destroy them
into the known prior distribution, i.e., Gaussian distribution;
2) a reverse process gradually generates data from the prior
distribution with iterative sampling process; 3) an architecture-
free network learns the gradient field (i.e., score function) of
noisy samples in forward process, which guides the reverse
process to reconstruct data samples. Given its probabilistic
nature, it would be helpful to learn the randomness in pulsative
signals, which is of importance to the imputation accuracy.
Moreover, diffusion models have demonstrated strong results
in time-series imputation and forecasting [11], [12], while their
advantages for pulsative signals have not been explored. Yet,
a probabilistic generative model may be useful for the pulse
imputation task as they could model the stochastic components
of these signals, such as varying morphologies and a lack of
context information.
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Fig. 1. The proposed ‘PulseDiff’ methodology to improve diffusion models for pulsative signal imputation. A) Calculation of the pulse template for each
subject. B) Formation of the pulse prior using the rhythm confidence score to / to not fill missing beats. C) Augmentation of the pulse prior by applying
random shifts in pulse location and amplitude.

In this work, we introduce diffusion-based probabilistic
generative models to the benchmark pulse imputation task.
Moreover, to further boost the accuracy, we design PulseDiff,
a diffusion model conditioned on an augmented template
prior. Specifically, 1) considering the quasiperiodic structure,
we propose to extract a pulse template from the observed
values, compute a template-based prior for missing values,
and introduce a rhythm confidence score to reject misleading
priors; 2) considering the pulse morphologies varying over
time, we augment our prior by adding random shifts to
template positions and amplitudes; 3) considering the pulse
morphologies varying across populations, we extract the tem-
plate at the subject-level to capture the subject-specific pulse
morphology. Our methodology is highlighted in Figure 1, and
our improvements on generation results can be seen by a
sample in Figure 2.

By designing the augmented template-based prior as the
indicating information, we make the following contributions
for pulse imputation:

• We introduce probabilistic generative models into the
benchmark pulse imputation task. With conditional dif-
fusion models, we achieve comparable results with the
SOTA transformer-based baseline models.

• We condition diffusion models on a data-driven prior to
improve the imputation accuracy. For each individual,
we formulate the methods to extract pulse template and
compute the prior for missing values. Then, we de-
sign conditioning augmentation methods and confidence
scores to strengthen the prior.

• We demonstrate that our method steadily improves the
reconstruction accuracy of two baseline diffusion mod-
els. Moreover, our model outperforms both deterministic
and probabilistic works in pulse imputation of transient
(short-interval) missing values, and strengthens the prob-
abilistic models during imputation of extended (long-
interval) missing values.

II. RELATED WORKS

A. Pulse Imputation

The benchmark task of pulsative signal imputation is es-
tablished by PulseImpute [2]. They provide a comprehensive
study which contains both signal processing methods such as
mean filling [13], linear interpolation [14], and Fast Fourier
Transformer (FFT) imputation [15], and deep learning meth-
ods such as 1) RNN imputation benchmark BRITS [16], 2)
transformer-based architectures DeepMVI [17], Vanilla Trans-
former [18], and Conv9 [19], and 3) GAN-based approaches
BRITS w/ GAIL [20], [21] and NAOMI [21]. As these
methods are not designed to capture the quasiperiodicity and
morphologies of pulsative signals, their imputation results are
limited. Therefore, PulseImpute [2] specifically designs a bot-
tleneck dilated convolutional transformer for pulse imputation,
BDC Trans, and achieves the SOTA performance. However,
probabilistic models are not considered in PulseImpute. In this
work, we establish the probabilistic pulse imputation baselines,
and propose improving techniques which are specifically de-
signed for pulsative signals.
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Fig. 2. Comparison of imputation results on ECG waveforms from the PTB-XL dataset with 30% transient and extended missing values. PulseDiff improves
performance of conditioning denoising diffusion probabilistic models CSDI [11] and SSSDS4 [12] by leveraging a pulse template as additional conditioning
information. Imputation performance with PulseDiff-SSSDS4 also beats the state-of-the-art transformer model, BDC Trans, for transient missingness and is
comparable for extended missingness.

B. Denoising Diffusion Probabilistic Models
The probabilistic generative model DDPMs have achieved

the state-of-the-art generation quality in both generation tasks,
e.g., image generation [22]–[24], video generation [25], [26]
and waveform generation [27]–[29], and conditional restora-
tion tasks, e.g., image restoration [9], sketch-guided image
generation [30], and time-series imputation [11]. Especially,
in time-series modelling, diffusion models have shown strong
capability in various datasets such as Traffic, Air Quality, and
Healthcare.

However, the advantages of diffusion models have not been
widely explored for bio-electrical signal processing. DeScoD-
ECG [31] employs diffusion models for ECG denoising. One
related work is SSSD [12]. SSSD utilized the generation qual-
ity of diffusion models [11], [32] and improved the network
architecture with state-space models [33] in order to capture
long-term dependencies. However, they focused on general
time-series imputation and forecasting, and ECG imputation
is simply considered as one of the application scenarios. In
comparison, our PulseDiff is specifically designed for pulse
imputation by considering the quasiperiodic structure and
varying morphologies, and is free to the choice of foundation
diffusion models.

III. METHODOLOGY

A. Preliminary
a) Probabilistic Pulse Imputation: The task of pulse

imputation aims to generate the missing values xta, given
the observed values xob. In traditional deterministic models, a
mapping function xta = fθ(x

ob) is learned to estimate missing
values with convolutional or transformer based architectures.
In comparison, with probabilistic models, we are estimating
the true conditional data distribution p(xta

0 |xob) with the model
distribution pθ(x

ta
0 |xob).

To simplify annotation, we follow the notation introduced
in the time-series diffusion model CSDI [11], to denote each

pulse recording as {x,m, s}. The pulse values are stored in
x ∈ RL, where L is the time length of recording. The missing
or observed pulse values are denoted by an observation mask
m ∈ RL, where ml = 0 if xl is missing and ml = 1 if xl

is observed. The timestamp of values is stored by s ∈ RL.
Therefore, for each single-channel pulse recording, we denote
it by {x,m, s}, and x is composed by missing values xta and
observed values xob.

b) Conditional Diffusion Models: For pulse imputation,
we introduce conditional diffusion models which use a forward
process to destroy the pulsative signals x0 into standard
Gaussian noise xT ∼ N (0, I) with a predefined noise schedule
0 < β1 < · · · < βt < · · · < βT < 1, and use a reverse process
to iteratively generate the missing values xta in x0. In forward
process, the transition probability and the noise distribution
q(xt|x0) at each time step t ∈ [1, . . . , T ] can be denoted as:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (1)

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)ϵ), (2)

where ϵ ∼ N (0, I) is injected standard Gaussian noise,
αt := 1 − βt and ᾱt :=

∏t
s=1 αs represent the noise level

at time step t. In reverse process, a denoising process starting
from p(xT ) ∼ N (0, I) gradually removes the noise at each
inference step given observed data xob:

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt, x
ob), (3)

pθ(xt−1|xt) = N (xt−1;µθ(xt, t, x
ob), σ2

θI), (4)

where the mean and the variance can be parameterized as:

µθ(xt, t, x
ob) =

1
√
αt

(xt −
βt√
1− ᾱt

ϵθ(xt, t, x
ob)), (5)

σ2
θ =

1− ᾱt−1

1− ᾱt
βt. (6)
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Diffusion models are trained by maximizing the variation
lower bound of the likelihood pθ(x0). With the same param-
eterization of µθ, we employ the training objective from [5],
[11], [32]:

L(θ) = Ex0,ϵ,t

∥∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t, x

ob)
∥∥2
2
. (7)

B. PulseDiff

The proposed work utilizes a data-driven template to instruct
the generation process of diffusion models. To improve the
imputation accuracy, our design deals with several considera-
tions: 1) how to construct the template? For example, either a
population average (global) template or an individual template
may be helpful; 2) how to consider the unknown health
condition of each recording? Given same xob, the ground-
truth values can be distinctively different due to the patients
health condition; 3) how to instruct diffusion models using the
template? For example, a small shift between the template and
the ground-truth data may induce error in imputation results.

In this section, the methods to compute a pulse prior, p,
from an individual recording {x,m, s} are first introduced.
To calculate an effective pulse prior, we follow a three-
step process that accounts for the quasi-periodic structure
of pulsative signals, subject-specific pulse morphologies, and
the temporal variability in pulse occurrence. This process is
illustrated in figure 1.

a) Pulse Template: In order to compute a pulse prior,
p ∈ RL, for each individual recording, {x,m, s}, a pulse
template will first be extracted from the observed values, xob.
Given that pulsative morphologies vary across the population,
a pulse template will be extracted for each subject, such that
the individual’s morphology is captured. The quasi-periodic
structure of pulsative signals serves as the foundation for
extracting a pulse template waveform from them, which can
be seen as capturing the common information of each beat.
To create a pulse template, pulse waveforms will be detected
from the partially observed recording and averaged. To enable
the detection of pulse waveforms in the recording using
signal processing algorithms, the observed values, xob, will
be linearly interpolated to form xob−l; a new sequence with
no missing values.

To detect pulse waveforms in xob−l, a matched filter will
be used. As the interpolated waveform in xob−l is likely to
be missing important waveform information, such as peaks, a
matched filter is chosen due to its robustness for identifying
patterns in signals. For use as the matched filter template, an
external pulse template, pext, is constructed from a small group
of recordings, Next, split from the training dataset of size N ,
whereby Next ≪ N . To form the external pulse template for
ECG recordings, a Christov detector [34] will be used to detect
the locations of each QRS complex present in the Next fully-
observed recordings. A subtraction of 250 ms is applied to the
detected locations to include the P-wave. Each signal is split
based on the detected locations, and subsequently overlayed,
to compute the external pulse template as the median average
waveform.

The cross correlation is given by,

c(t) = x(t) ∗ h(−t) =
∑
m

x(t+m)h(m), (8)

where ∗ represents the convolution of a signal x(t) and
a time-reversed matched filter template h(−t). The cross-
correlation coefficient, cext(t), between the signal xob−l(t)
and the external pulse template, pg(t), is computed from (8).
The value cext(t) will then be thresholded to detect pulse
waveforms in xob−l(t). Specifically, values of cext(t) above
the 97th percentile and separated by at least 400 ms (assuming
a maximum detectable resting heart rate of 150 bpm) are
classified as the locations of pulse waveforms. The thresholds
were decided from discussions with a clinical expert. As a
result, a sequence of detected beat locations is formed. An
intermediate pulse template, p′s, will then be constructed by
splitting the observed signal, xob, at the detected locations,
overlaying these segments, and computing the median average
waveform.

To further improve the accuracy of beat detection, and
thus the pulse template, the process detailed in the previous
paragraph will be repeated using p′s(t) as the matched filter
template. The result is a sequence of detected pulse locations,
bs = (bs,n)n∈N,0≤bs,n<L, where bs,n is the index of the nth

beat. By splitting xob at bs and overlaying these segments, the
final pulse template, ps, is computed as the median average
waveform. By using this two-step detection method, subject-
specific pulse morphologies have been leveraged to detect
beats and create the final pulse template.

In summary, for each recording, a pulse template, ps, is
extracted using the following process:

1) The observed values, xob, will be linearly interpolated to
form xob−l, a new sequence with missing values filled.

2) A sequence of pulse locations, bs = (bs,n)n∈N,0≤bs,n<L,
will be detected in xob−l using the Christov detector [34]
and a matched filter.

3) The interpolated observations, xob−l, are split into win-
dows around each detected pulse.

4) The windowed signals are stacked and the median
pulse waveform is computed. This will be used as the
individual’s pulse template, ps.

b) Rhythm Confidence Score: An individual could have
a health condition such as a cardiac arrhythmia which causes
an irregular pulse rhythm. However, information regarding the
rhythm could be used to strengthen the template prior. For
example, if a recording was known to have a regular rhythm,
it would be possible to extend the detected pulse locations in
bs by predicting beat locations at the same rhythm.

To exploit the quasi-periodic structure of pulsative signals,
we introduce a score to quantify our confidence in the observed
rhythm that depends on each recording {x,m, t}. The rhythm
confidence score will be used to accurately impute missing
beat locations, when the health condition is unknown during
imputation.

The rhythm confidence score is derived from the ordered
sequence of pulse locations, bs = (bs,n)n∈N,0≤bs,n<L. Specif-
ically, a new sequence, ∆bs = (∆bs,n)n∈N, is constructed
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where each element ∆bs,n is the inter-beat interval such that
∆bs,n = bs,n+1 − bs,n. From this, the median inter-beat
interval, median(∆bs), and the standard deviation of inter-
beat intervals, σ∆bs , will be computed. The rhythm confidence
score for a subject is given by,

Rs =
σ∆bs

median(∆bs)
. (9)

This has a form similar to the coefficient of variation, CV =
σ
µ , but median is used in place of the mean µ to provide a more
robust estimate of the average beat interval in the presence of
missing values.

The rhythm confidence score will be thresholded to specify
if missing pulse locations should be imputed with a pulse
template, which could strengthen the pulse prior. Missing beat
locations will be imputed using the median inter-beat interval
as detailed in Section 2 of the supplementary materials. The
total sequence of pulse locations including imputed beats will
be referred to as b′s = (bs,n)n∈N,0≤b′s,n<L, where b′s,n is the
index of the nth beat, and the length of b′s, n′ exceeds bs, n, i.e.
n′ > n. Using the rhythm confidence score, pulse templates,
ps, are placed in sequence at all detected beat locations to
form a pulse prior as

p(t) =

{∑n′

i=1 ps(t− b′s,i), if Rs < r∑n
i=1 ps(t− bs,i), otherwise,

(10)

whereby a value of r = 1 will be fixed during this work,
implying the variability of observed intervals must be less than
the median interval for pulse templates to be placed at missing
pulse locations.

Due to the fact ps is of length one beat, and smaller than
the length L of the recording, the sequence of pulse templates
may be non-overlapping. Therefore, a complete pulse prior
is formed by filling the missing values with zeros. This
interpolated waveform will here-in be referred to as the ‘fixed
pulse prior’.

c) Template Augmentation: If the beat locations in bs
and b′s vary from the ground-truth then the template could
provide misleading information. The amount of variation
between predicted and ground truth beat locations is driven
by the following factors: 1) uncertainty in beat detection,
2) uncertainty in beat imputation, 3) uncertainty in pulse
morphology (e.g. amplitude), and 4) uncertainty due to natural
heart rate variability. To model these uncertainties, we propose
to augment the pulse prior by adding random shifts to the beat
location and amplitude.

An augmented pulse prior will be formed as

p(t) =

{∑n′

i=1(ai + ps(t− b′s,i − si)), if Rs < r∑n
i=1(ai + ps(t− bs,i − si)), otherwise,

(11)

where ps(·) represents the pulse template positioned at a
randomly shifted beat location. Specifically, the random shift
in beat location, si, is modelled as an i.i.d random variable
drawn from a uniform distribution, i.e., si ∼ U(−M,+M),
and is used to augment the location of the beat. Furthermore,
each ai represents a random shift in amplitude for each beat,
modelled as an i.i.d random variable drawn from a uniform

distribution, i.e., ai ∼ U(−A,A). Again, missing values are
filled with zeros to avoid providing potentially misleading
values between the beats.

In order to provide better coverage of the ground truth data,
we propose to sample K augmented pulse priors for use as
conditioning information, with each augmented prior denoted
as pk for k = 1, 2...,K and calculated using (11). The result is
an augmented template prior, p ∈ RK×L, for each individual,
with pk stored in each row.

d) Template-Conditional Diffusion Models: The data for
an individual can now be represented as {x,m, s,p}, where
p ∈ RK×L is their augmented template prior. The augmented
template prior is used as additional conditioning information
such that the reverse process is reformulated as,

pθ(x
ta
0:T |xob,p) = p(xta

T )

T∏
t=1

pθ(x
ta
t−1|xta

t , xob,p), (12)

pθ(x
ta
t−1|xta

t , xob,p) = N (xta
t−1;µθ(x

ta
t , t|xob,p), σ2

θI),
(13)

where xta
T ∼ N (0, I). The variance σ2

θ is defined the same as
in (6), while the mean function is parameterized as,

µθ(x
ta
t , t|xob,p) =

1
√
αt

(xta
t − βt√

1− ᾱt
ϵθ(x

ta
t , t|xob,p)).

(14)

The modified training objective is given by,

L(θ) = Ex0,ϵ,t

∥∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t, x

ob,p)
∥∥2
2
.

(15)

Given the function ϵθ, observed data xob and the augmented
template prior p, we can sample xta

0 using the reverse process
in (12) and (13) for pulse imputation with PulseDiff.

IV. EXPERIMENTS

A. Experiment Setup

a) Training Dataset: We use the open-source PTB-XL
dataset1 for ECG imputation. PTB-XL contains both the
recordings from the collection of with co-occurring patholo-
gies, e.g., myocardial infarction and conduction disturbance,
and the samples from healthy populations. The time length
of PTB-XL recordings is 10 seconds. The sampling rate is
100Hz. To align with PulseImpute, we follow their methods for
splitting the data: 8730 samples for training, 2176 samples for
validation, and 10931 samples for testing. In our experiments,
we randomly select 10 recordings from the training set to
calculate the global template pg and use the remaining 8720
samples for training. We use 64 samples for validation in
the training process of diffusion-based models, and randomly
extract 100 samples as the evaluation set for both PulseImpute
baseline models and diffusion-based models.

1https://physionet.org/content/ptb-xl/1.0.3/

https://physionet.org/content/ptb-xl/1.0.3/
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TABLE I
IMPUTATION PERFORMANCE ON PTBXL DATASET AND DOWNSTREAM TASKS WITH 30% TRANSIENT MISSING VALUE RATIO. MSE IS USED FOR

RECONSTRUCTION ACCURACY, AND OTHER METRICS ARE USED IN DOWNSTREAM TASKS: CLASSIFICATION AND BEAT DETECTION.

Model MSE ↓ Rhythm AUC ↑ Form AUC ↑ Diagnostic AUC ↑ F1 ↑ Precision ↑ Sensitivity ↑

BRITS w/ GAIL [20] 0.0346 0.8673 0.7814 0.7981 0.4638 0.6588 0.3579
Template 0.0215 0.9367 0.7425 0.8418 0.6852 0.7471 0.6328
NAOMI [21] 0.0125 0.9388 0.8411 0.8528 0.7709 0.7612 0.7809
Vanilla Trans [18] 0.0081 0.9372 0.8205 0.8674 0.8380 0.8176 0.8594
Conv9 Trans [19] 0.0081 0.9236 0.8305 0.8731 0.8165 0.8039 0.8295
BDC Trans [2] 0.0043 0.9429 0.8129 0.8745 0.8995 0.8932 0.9058

CSDI [11] 0.0091 0.9356 0.8280 0.8610 0.7631 0.8388 0.7000
PulseDiff-CSDI 0.0065 0.9511 0.8309 0.8740 0.8507 0.8780 0.8250

SSSDS4 [12] 0.0023 0.9509 0.8450 0.8734 0.9304 0.9457 0.9155
PulseDiff-SSSDS4 0.0021 0.9546 0.8377 0.8822 0.9402 0.9626 0.9187

b) Training Details: For transformer-based models built
by PulseImpute [2], we utilize their open-source implemen-
tation2 and pretrained models. Training and data details can
be found in their paper and supplementary materials. For
diffusion-based probabilistic generative models, we establish
two baseline models with CSDI3 and SSSDS4 4 by incor-
porating their official implementation into pulse imputation.
We denote the template-guided ones as PulseDiff-CSDI and
PulseDiff-SSSDS4 , respectively.

For CSDI and PulseDiff-CSDI, we employ the same settings
as used in CSDI [11]. Specifically, the number of residual
layers is set as 4, the number of residual channels as 64, the
dimension of the diffusion embedding as 128, and the number
of time steps in both diffusion and reverse process as T = 50
with a quadratic noise schedule from β1 = 0.0001 to βT =
0.5. A total of 200 epochs are used and batch size of 16. As
we focus on the single-channel pulse recording, we remove the
feature transformer layer and retain the temporal transformer
layer with embedding dimension as 16 and 8 self-attention
heads. The Adam optimizer is employed. The learning rate is
1e−3 and decayed to 1e−4 at 75% and 1e−5 at 90% of total
epochs.

For SSSDS4 and PulseDiff-SSSDS4 , we employ the same
settings as used in SSSDS4 [12]. Specifically, the number of
residual layers is set as 36, the number of residual channels
as 256, number of skip channels as 256, diffusion embedding
dimension 1 as 128, embedding dimensions 2 and 3 as 256,
and the number of time steps in both diffusion and reverse
process as T = 200 with a linear noise schedule from β1 =
0.0001 to βT = 0.02. A total of 200 epochs are used and
batch size of 4. The Adam optimizer is employed and the
learning rate is 2e−4 with no decay. We train each probabilistic
generative model on a single Nvidia Tesla A30 GPU.

PulseDiff-CSDI and PulseDiff-SSSDS4 introduce three ad-
ditional hyperparameters for tuning the augmented pulse tem-
plates: the magnitude of random shifts in beat location, M ; the
magnitude of random shifts in beat amplitude, A; and the total
number of augmented pulse priors, K. Hyperparameter search
is conducted using a Bayesian optimisation with 50 iterations,
each for a total of 25 epochs, whereby continuous values of M

2https://github.com/rehg-lab/pulseimpute
3https://github.com/ermongroup/CSDI
4https://github.com/AI4HealthUOL/SSSD

and A are trialled in the interval [0, 10] and integer values of
K in the interval [1, 16]. The optimal hyperparameter values
are chosen to minimize the MSE between imputed values
and ground-truth on the validation set. Because PulseDiff is
free to the choice of foundation diffusion model, we also
trial providing the augmented template prior as either input
only, conditioning side information only, or as both; for
compatibility with the DiffWave [32] architectures of CSDI
and SSSDS4 .

c) Missingness Patterns: Following PulseImpute, we use
two types of missingness patterns corresponding to short and
long intervals of data loss: transient missingness which models
the sporadic loss of 50 ms information packets, and extended
missingness which models sensor attachment issues. Transient
and extended missingness are both parameterized by a miss-
ingness percentage that controls the proportion of removed
samples in a waveform. A fixed missingness percentage of
30% (most common missing percentage observed in mHealth
systems) is used to train all models.

d) Evaluation Methods: Following PulseImpute, we
evaluate the model performance using reconstruction accu-
racy and downstream tasks. For evaluation of reconstruction
accuracy, we use the Mean Square Error (MSE) for both
deterministic models and probabilistic generative models. Fol-
lowing imputation of missing values with each model, the
reconstructed waveform was subject to downstream tasks.
First, a multi-label classification task was conducted whereby
diagnosis (e.g. WPW syndrome), form (e.g. inverted T-waves)
and rhythm (e.g. atrial fibrillation) were predicted using three
pre-trained xResNet1d’s which were built by PulseImpute.
Performance on the classification task is evaluated using
macro-AUC. Finally, a beat detection task is performed on
the imputed ECG waveforms. Specifically, beats were detected
using the Stationary Wavelet Transform peak detector. The
detected beat locations were compared to the ground truth
beat locations, and beats in the imputed signal are matched
to the true beats with a 50 ms tolerance window. The beat
detection measures of F1 score, precision, and recall, are
used to evaluate performance on this task. Model performance
is assessed for different missingness percentages, from 10%
to 50% at a step size of 10%, to evaluate the effectiveness
of imputation methods in generalizing to varying amounts

https://github.com/rehg-lab/pulseimpute
https://github.com/ermongroup/CSDI
https://github.com/AI4HealthUOL/SSSD
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TABLE II
IMPUTATION PERFORMANCE ON PTBXL DATASET AND DOWNSTREAM TASKS WITH 30% EXTENDED MISSING VALUE RATIO. MSE IS USED FOR

RECONSTRUCTION ACCURACY, AND OTHER METRICS ARE USED IN DOWNSTREAM TASKS: CLASSIFICATION AND BEAT DETECTION.

Model MSE ↓ Rhythm AUC ↑ Form AUC ↑ Diagnostic AUC ↑ F1 ↑ Precision ↑ Sensitivity ↑

BRITS w/ GAIL [20] 0.0536 0.8868 0.7714 0.8007 0.0767 0.0758 0.0775
NAOMI [21] 0.0400 0.9104 0.7737 0.8403 0.1593 0.1653 0.1538
Template 0.0363 0.9276 0.8372 0.8547 0.4704 0.4766 0.4644
Conv9 Trans [19] 0.0307 0.9114 0.7731 0.8143 0.0243 0.9000 0.0123
Vanilla Trans [18] 0.0248 0.8980 0.7736 0.7967 0.4581 0.6156 0.3648
BDC Trans [2] 0.0172 0.9597 0.7908 0.8074 0.6582 0.7155 0.6094

CSDI [11] 0.0306 0.8835 0.7673 0.8214 0.0328 0.2583 0.0175
PulseDiff-CSDI 0.0236 0.9272 0.8105 0.8395 0.4961 0.6030 0.4213

SSSDS4 [12] 0.0197 0.9331 0.8038 0.8640 0.6008 0.7216 0.5147
PulseDiff-SSSDS4 0.0192 0.9316 0.8030 0.8528 0.6083 0.7602 0.5070

of missingness at evaluation stage. For comparison, the per-
formance of PulseDiff will be evaluated against the (non-
augmented) pulse prior, where imputed data is set equal to
the prior, to demonstrate how PulseDiff leverages the prior to
improve performance.

e) Ablation Study: To demonstrate the utility of each
proposed component in PulseDiff, we will perform an ablation
study. PulseDiff-CSDI will be gradually reduced to the base-
line CSDI model through the following series of ablations: 1)
remove the rhythm confidence score, 2) reduce the number
of augmented templates from K to 1, 3) remove beat-level
stochastic shift terms used in augmentation, 4) remove the
pulse prior. By the final ablation, the model is reduced to
CSDI. Each of these models will be setup as described in
Section IV-A0b and subject to the same downstream tasks.
For computational ease, we evaluate these models with 50
training epochs on the data with 30% transient missingness.
The evaluation dataset for the ablation study will be selected
using stratified sampling with respect to the different class
labels available. This is done because the PTB-XL dataset has
unbalanced classes, but we aim to demonstrate the utility of
PulseDiff across a complete range of patient conditions.

B. Results

a) Hyperparameters: Bayesian optimisation on the val-
idation set identified suitable hyperparameters for PulseDiff-
CSDI to be location shift M = 2, amplitude shift A = 0.01
and number of templates K = 16 for transient missingness,
and M = 2, A = 0.01 and K = 16 for extended missingness
(where M is rounded to nearest integer, and A is shown for
2 decimal places). Providing the augmented template prior as
both input and conditioning side information worked best for
PulseDiff-CSDI. Similarly, the hyperparameters for PulseDiff-
SSSDS4 were found to be M = 1, A = 0.00 and K = 8 for
transient missingness, and M = 10, A = 0.00 and K = 8 for
extended missingness. Providing the augmented template prior
as input only worked best for PulseDiff-SSSDS4. PulseDiff-
CSDI and PulseDiff-SSSDS4 are trained as described in Sec-
tion IV-A0b using the identified hyperparameter setups, and
their imputation performance are shown next.

b) Reconstruction accuracy: Accuracy of reconstruction
is measured by the widely used MSE, the results of which
for 30% transient and extended missingness are quantified
and displayed in Table I and Table II, respectively. From
Table I showing transient missingness, we can observe that
our proposed method reduces the MSE for both CSDI and
SSSDS4. Moreover, PulseDiff-SSSDS4 achieves SOTA result
with an MSE of 0.0021, better-performing than all probabilistic
and deterministic models. From Table II showing extended
missingness, we observe that our method also reduces the
MSE for two diffusion baseline models. Moreover, PulseDiff-
SSSDS4 achieves the best accuracy among probabilistic mod-
els with an MSE of 0.0192, which has been comparable to
the SOTA quality achieved by BDC [2]. In addition, we notice
that in comparison with our extracted pulse prior (Template in
Table I and Table II), PulseDiff variants perform significantly
better, verifying the advantage and necessity of probabilistic
generative models. Given different missingness percentages,
the reconstruction accuracy is also assessed for an overall
evaluation of our methods for diffusion models. As shown
in Figure 4, our PulseDiff variants steadily decrease the MSE
across all percentages (from 10% to 50%) of missing values
tested.

Figure 2 shows a case study of the reconstructed waveforms
for 30% transient and extended missingness for two different
subjects. By leveraging a pulse prior, p, PulseDiff variants
improve the imputation performance of CSDI and SSSDS4

by a considerable margin. Upon comparison of with CSDI,
PulseDiff-CSDI has improved the imputation for missing beats
to generate significantly more realistic ECG waveforms. Upon
comparison with SSSDS4, PulseDiff-SSSDS4 reconstructs a
larger amount of ECG waveform and achieves improvements
in estimating the beat amplitudes. Note also how the pulse
prior has enabled the confidence intervals of the imputed
values to become more informed and sensibly bounded. Re-
constructed waveforms are also shown for the current SOTA
transformer model, BDC Trans, and a standard transformer,
Vanilla Trans. Empirically, PulseDiff variants reconstruct more
realistic pulse waveforms compared to these deterministic
models.

c) Downstream tasks: Performance on the classification
task (diagnosis, form and rhythm) and on the beat detection
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Fig. 3. Performance on the classification and beat detection downstream tasks for probabilistic diffusion generative models for different percentages of transient
and extended missingness.

TABLE III
ABLATION STUDY FOR PULSEDIFF COMPONENTS EVALUATED ON THE PTBXL DATASET AND DOWNSTREAM TASKS WITH 30% TRANSIENT MISSING

VALUES.

Model MSE ↓ Rhythm AUC ↑ Form AUC ↑ Diagnostic AUC ↑ F1 ↑ Precision ↑ Sensitivity ↑

CSDI [11] 0.0177 0.8859 0.7344 0.7117 0.0245 0.0295 0.0209
CSDI + 1 fixed prior 0.0143 0.9254 0.7410 0.7208 0.0527 0.0462 0.0613
CSDI + 1 fixed prior + score 0.0122 0.9093 0.7532 0.7260 0.0425 0.0344 0.0556
CSDI + 16 augmented prior 0.0120 0.9084 0.7619 0.7294 0.0499 0.0420 0.0613
PulseDiff-CSDI = CSDI + 16 augmented prior + score 0.0135 0.9079 0.7518 0.7250 0.0374 0.0320 0.0448

task (F1, precision, sensitivity) for 30% transient and extended
missingness are also shown in Tables I and II, respectively.
From Table I, we observe that our method improves the
baseline diffusion models CSDI on every evaluation metric,
and SSSD on most metrics. Moreover, our PulseDiff-SSSDS4

distinctively improves the performance of other probabilistic
and deterministic models on 5/6 metrics. From Table II, we
observe that our method improves CSDI by a considerable
margin and achieves similar performance with SSSD. How-
ever, unlike transient missingness, the advantage of diffusion
models in extended missing is not clear. Deterministic models
especially BDC still hold the best performance. One possible
reason is that diffusion models are trained to estimate the
Gaussian noise instead of directly capturing the dependency
in data sequence. Therefore, in extended missingness, even
if strong guidance is provided, the generated data may have
variances compared to the ground-truth sample, leading to
results inferior to deterministic models that are optimized by
a data-domain loss. The improvement of diffusion models in
this setting will be explored in our future work.

Figure 3 displays the performance of the diffusion prob-
abilistic models on the downstream tasks for different miss-
ingness percentages. From this, PulseDiff-CSDI demonstrates
consistent improvements upon CSDI in both transient and
extended missingness. In addition, PulseDiff-SSSDS4 demon-
strates improvements upon SSSDS4 in transient missingness,
and performs comparably for extended missingness.
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Fig. 4. Reconstruction accuracy of probabilistic diffusion generative models
as quantified using MSE for different percentages of transient and extended
missingness.

C. Ablation Study

Table III shows the results of the ablation study conducted
on each proposed component in PulseDiff, evaluated for
PulseDiff-CSDI with the same hyperparameter setting identi-
fied earlier. In the table, ‘Score’ denotes the rhythm confidence
score. Validating earlier results, we find that MSE is lower for
PulseDiff-CSDI compared to CSDI, and the performance on
downstream tasks is higher. Upon comparison of ‘CSDI + 1
fixed prior’ and ‘CSDI + 1 fixed prior + score’, it is observed
that introducing the rhythm confidence score lowers MSE and
improves performance on downstream tasks. Additionally, by
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comparing ‘CSDI + 1 fixed prior’ to ‘CSDI + 16 augmented
prior’, we find that introducing template augmentation does
indeed lower MSE and improve performance on downstream
tasks. Therefore, these two ablations validate the utility of the
rhythm confidence score and template augmentation compo-
nents in PulseDiff. However, we observe that the performance
of PulseDiff-CSDI is lower compared to ‘CSDI + 1 fixed prior
+ score’ and ‘CSDI + 16 augmented prior’, suggesting that
there is further room to optimise PulseDiff by considering how
our two proposed improving techniques are used jointly. One
potential method could be to use classifier-free guidance [35]
to attain a trade-off between template augmentation and the
rhythm confidence score to combine their benefits; which will
be explored in future work.

V. CONCLUSION AND FUTURE DIRECTIONS

In this work, we introduce PulseDiff, a methodology de-
signed to aid missing value imputation using DDPMs in
ECG data. By analyzing the quasiperiodic structure of pulse
data, we leverage observed components of the signal to ex-
tract a personalized template and compute a template-based
prior for the missing values. We also consider the time-
varying pulse morphologies by augmenting our prior with
random shift terms on the template across both positional
and amplitude dimensions. Moreover, we account for the
variation of pulse morphologies across different populations by
extracting subject-level templates and introducing a confidence
score to prevent providing misleading prior information during
imputation. The advantages of these improving techniques are
carefully studied.

From the perspective of methodology, PulseDiff guides the
diffusion models with a template prior which highlights the
location and morphology of pulsative signals. It is partly
similar to the image generation guided by user-defined sketch.
However, the difference is that our manually estimated prior
may not be consistent with the ground-truth data, especially
when we suffer lots of missing values, e.g., the extended
missingness. Therefore, in the future we will study following
three topics: 1) we will improve both diffusion models and our
template in the extended missing task; 2) optimise PulseDiff
performance by considering how template augmentation and
rhythm confidence score are used jointly; and 3) extend our
methods on more pulsative data such as PPG and blood pres-
sure, to provide a strong generative model based imputation
model for this community. Our method has the potential to
improve the quality of mHealth ECG recordings and thus
improve the ability of automated diagnostic algorithms to
provide accurate classification of abnormal ECGs recorded
using mHealth technologies.
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