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Abstract
Background: Radiotherapy, the use of high-energy radiation to treat can-
cer, presents a challenge in determining treatment outcome relationships
due to its complex nature. These challenges include its continuous, spatial,
high-dimensional, multi-collinear treatment, and personalized nature, which
introduces confounding bias.
Purpose:Existing voxel based estimators may lead to biased estimates as
they do not use a causal inference framework. We propose a novel estimator
using sparsity via Adaptive Lasso within Pearl’s causal framework, the Causal
Adaptive Lasso (CAL).
Methods: First, simplified 2-dimensional treatment plans were simulated on
10 × 10 and 25 × 25 grids. Each simulation had an organ at risk placed in a
consistent location where dose was minimized and a randomly placed target
volume where dose was maximized. Treatment uncertainties were simulated to
emulated a fractionated delivery. A directed acyclic graph was devised which
captured the causal relationship between our outcome, including confounding.
The estimand was set to the associated dose-outcome response for each simu-
lated delivery (n = 500). We compared our proposed estimator the CAL against
established voxel based regression estimators using planned and delivered sim-
ulated doses. Three variations on the causal inference-based estimators were
implemented:causal regression without sparsity,CAL,and pixel-wise CAL.Vari-
ables were chosen based on Pearl’s Back-Door Criterion. Model performance
was evaluated using Mean Squared Error (MSE) and assessing bias of the
recovered estimand.
Results: CAL is tested on simulated radiotherapy treatment outcome data
with a spatially embedded dose response function. All tested CAL estimators
outperformed voxel-based estimators, resulting in significantly lower total
MSE, MSEtot, and bias, yielding up to a four order of magnitude improvement
in MSEtot compared to current voxel-based estimators (MSEtot < 1 × 102

compared to MSEtot ≈ 1 × 106). CAL also showed minimal bias in pixels with
no dose response.
Conclusions: This work shows that leveraging sparse causal inference meth-
ods can benefit both the identification of regions of given dose-response and
the estimation of treatment effects. Causal inference methodologies provide
a powerful approach to account for limitations in voxel-based analysis. Adapt-
ing causal inference methodologies to the analysis of clinical radiotherapy
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treatment-outcome data could lead to new and impactful insights on the causes
of treatment complications.

KEYWORDS
causal inference, radiotherapy outcome modelling, voxel-based analysis

1 INTRODUCTION

A recent focus of radiotherapy research has been to
identify dose-sensitive regions of the anatomy from
observational data, whereby the voxel-based analysis
has emerged as the de-facto method.2 In this method,
researchers regress the continuous planned radiation
dose at each voxel against the observed complication
outcomes, to map spatial dose response relationships.
The voxel-based analysis has been applied to several
treatment sites, including the bladder,3 parotid glands,4

the lung,5 the heart6 and has also been adapted for the
study of treatment errors on outcomes.7

While the voxel-based analysis has been effective in
mapping spatial dose response relationships, it does
not adequately control for the confounding bias induced
by the personalized nature of radiotherapy treatment.
As a result, its ability to establish causal relation-
ships between dose and complications is limited. In
fact, determining causal relationships from observa-
tional data is impossible outside of a causal inference
framework.

The Average Treatment Effect (ATE) is a common
estimand in causal inference literature, whereby a treat-
ment A is said to have a finite ATE on the outcome Y if
𝔼[YA=a1 ] ≠ 𝔼[YA=a2 ], where a1 and a2 represent expo-
sure versus no exposure, two competing treatments, or
the same treatment modality but at different doses. The
task of ATE estimation is typically addressed through
Randomized Controlled Trials (RCTs), where random
assignment balances treatment and control groups
for unbiased ATE estimation. However, RCTs may not
always be feasible or ethical, such as in radiotherapy,
where dose must be personalized.

To estimate ATEs when RCTs cannot be conducted,
alternative causal frameworks must be employed. For
instance, Pearl’s Structural Causal Models (SCMs) and
“do-calculus”, can be employed to estimate ATEs using
observational data.8 In Pearl’s framework,Direct Acyclic
Graphs (DAGs) represent the conditional independence
properties between variables, and the SCM is the sys-
tem of generative equations that relate the variables
together. ATE estimation is then possible using SCMs
by leveraging Pearl’s adjustment criteria and do-calculus
in the form of an outcome/causal regression. However,
these techniques have not yet been explored for high-
dimensional and spatially complex treatments, such
as radiotherapy.

This work proposes a novel causal inference estima-
tor, Causal Adaptive Lasso (CAL), for estimating causal
effects between each component of a continuous, spa-
tial, high-dimensional, and multi-collinear treatment, and
an outcome variable. Specifically, CAL leverages the
sparsity-inducing properties of the Adaptive Lasso9

within Pearl’s causal framework to achieve two key
objectives:1) efficient estimation,by reducing the dimen-
sionality of the adjustment set via sparsity; and 2) multi-
collinearity control, by incorporating a ridge regression
step in the estimation of Adaptive Lasso weights.

To evaluate CAL, a simulation study is conducted to
generate radiotherapy treatment outcome data from a
simplified, yet realistic, data-generating process. This
study serves as a first introduction of causal infer-
ence within the context of the radiotherapy voxel-based
analysis.The simulation will investigate if CAL:1) outper-
forms existing voxel-based estimators across various
simulation settings; 2) can effectively identify voxels
with zero dose response due to the sparsity mech-
anism; and 3) can scale to treatments with higher
resolution/dimensionality.

2 METHODS

Our simulation aims to investigate what conditions
are required for unbiased voxel-based causal infer-
ence. Specifically, we are interested in quantifying the
performance of our estimation methods when the fol-
lowing are changed: data set size, resolution of the
treatment plan (number of pixels), and the size of ran-
dom treatment uncertainties in treatment delivery. To
do this, we simulate data from a simplified, yet realis-
tic, data-generating process for radiotherapy treatment
outcome data.

2.1 Data-generating process

Patients were modeled on 2D grids (10 × 10 or 25 ×
25 pixels) with a fixed OAR location and randomly
placed tumor. Treatment plans were simulated to max-
imize tumor dose while minimizing OAR dose, following
VMAT treatment principles.10 Delivered dose distribu-
tions incorporated three realistic treatment uncertain-
ties: dosimetric uncertainty, anatomical motion, and
setup uncertainty (Figure 1). Detailed simulation meth-
ods are provided in Supplementary Materials S.1.A-B.
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JENKINS ET AL. 3

F IGURE 1 An example of a simulated planned and delivered dose distribution for a patient. To simulate realistic delivered dose
distributions, three different treatment uncertainties are modeled: dosimetric uncertainty (independent white noise), anatomical motion
(correlated noise via Gaussian process), and setup uncertainty (shifted planned dose distribution).

F IGURE 2 The causal structure between variables used in this
simulation, represented using a DAG. Variable C is a measured
confounder, VO is a variable that controls the fall-off of dose around
the organ ray, MO is a variable that controls the magnitude of dose
on the organ ray, VT is a variable that controls the fall-off of dose
around the tumor, Dij is the value of the delivered dose distribution at
the pixel location x = i, y = j, and 𝐙 is a latent variable representing
the parameters of the treatment uncertainties. The DAG is drawn
only for three pixels, but extends over all pixels in this work.

2.1.1 DAG and SCM

The causal structure used in our simulation is shown
in Figure 2. The dose distribution 𝐃 is determined by
clinical parameters controlling dose fall-off (VO,VT ) and
magnitude (MO) around organs and tumors, along with
treatment uncertainties represented by latent variable
𝐙. A patient covariate C (e.g., concurrent chemother-
apy) personalizes treatment by affecting VO,MO,and VT ,
while also confounding the relationship between treat-
ment and outcome. For instance, covariate C could rep-
resent concurrent chemotherapy dosage, which could
affect the treatment plan and the treatment outcomes.11

Variables were generated using a SCM with non-
linear functions for C, VT , VO and MO (detailed in

F IGURE 3 (a) The estimand array (produced using
supplementary Equation 19), and (b) the interaction strength array
(produced using supplementary Equation 20), where the number of
pixels in the x- and y-directions is equal to Nx = 10 and Ny = 10,
respectively.

Supplementary Materials S.1.C). The outcome Y was
modeled linearly as

Y = 5C + UY +

Nx∑
i=1

Ny∑
j=1

(
Dij𝜃ij +

C
2

(Dij𝜉ij)
)

, (1)

where 𝜽 and 𝝃 represent sparse, inhomogeneous dose
response and interaction strength arrays, respectively,
as shown in Figure 3 (details in Supplementary Mate-
rials S.1.D). This linear outcome model was chosen for
clarity in introducing causal inference concepts,compat-
ibility with existing voxel-based methods, and to enable
fair comparison between estimators.

2.2 Estimands

Our chosen estimand is the ATE of delivered dose Dij
on outcome Y at each pixel. Given the form of Equation
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4 JENKINS ET AL.

(1), this coincides with the Conditional Average Treat-
ment Effect (CATE) at C = 0, CATE(C = 0). While both
estimands share the same expectation 𝜽, they differ in
variance:unconditional effects have variance 𝜉2

ij ∕4 while
conditional effects have zero variance (derivation in
Supplementary Materials I.C). This variance difference
represents a trade-off between estimation precision
and population-level generalizability; conditioning on
C improves accuracy but may limit generalizability to
broader populations.

2.3 Estimation methods

We compare our proposed CAL estimator with two
established voxel-based approaches: pixel-wise
planned dose and pixel-wise delivered dose regres-
sions (detailed in Supplementary Materials S.2). We
also evaluate two additional causal estimators: pixel-
wise CAL and causal regression without sparsity. All
causal methods share four key assumptions: (1) known
causal structure (Figure 2), (2) SCM-based data gener-
ation, (3) linear treatment effects on outcomes, and (4)
conditional ignorability,causal consistency,and positivity.

These five estimation methods were carefully
selected to demonstrate the impact of causal inference
and sparsity in voxel-based analysis. The pixel-wise
planned and pixel-wise delivered dose regressions
represent current state-of -the-art approaches in
radiotherapy literature. The causal regression without
sparsity isolates the contribution of the causal frame-
work alone, while CAL and pixel-wise CAL demonstrate
the combined benefits of causal inference with sparsity-
inducing regularization. This comparative framework
allows us to quantify performance improvements
attributable to each methodological component.

To achieve unbiased causal effect estimation,
adjustment sets were identified using the Back-Door
criterion,12 which isolates variables that block all back-
door paths between treatment and outcome.The adjust-
ment sets for ATE inference at pixel (i, j) are given by

𝐀 = {𝐃− {Dij}, C}; (2a)

𝐀 = {𝐃− {Dij}, VO, MO, VT }. (2b)

Where 𝐃 − {Dij} represents all values in dose distribu-
tion except at the current pixel. We selected adjustment
set (2 b) for our simulation as it provides greater robust-
ness against potential direct effects of MO, VO and VT
on the outcome. This adjustment set, in addition to Dij ,
forms the total set of features that will be used for ATE
estimation at each pixel.

The Causal Adaptive Lasso (CAL)
Our proposed estimator, CAL, employs a linear Adap-
tive Lasso with the identified adjustment set as features.

We selected Adaptive Lasso for its oracle property
(consistency in variable selection and parameter esti-
mation) and its ability to handle the sparse nature of
dose response.9 This sparsity facilitates identification of
critical anatomical regions by reducing treatment vari-
able dimensionality.The Adaptive Lasso parameters are
estimated by

𝜷 = arg min
𝜷

( n∑
i=1

(yi −

p∑
j=1

Xij𝛽j)2 + 𝜆

p∑
j=1

wj|𝛽j|
)

, (3)

where n is the training data size, p is the feature count,
Xij represents elements of the training data matrix, and
w ∈ ℝp is the adaptive weight vector.13 These weights
are calculated as

ŵ =
1|𝜷∗|𝛾 , (4)

with 𝛾 = 1 for simplicity and 𝜷∗ derived from ridge regres-
sion to mitigate multi-collinearity between pixels.14

Adaptive weights for VO, MO and VT are set to zero to
ensure their inclusion in the model.Both ridge and Adap-
tive Lasso hyperparameters (𝜆ridge and 𝜆) are selected
through 10-fold cross-validation using GLMNET15 in R16

to minimize MSE.
We also test pixel-wise CAL, which applies the same

approach at each individual pixel (resulting in NxNy sep-
arate regressions) and sets the adaptive weight for the
current pixel’s dose (Dij) to zero, hypothesizing this may
reduce estimation bias.

While our simulation study focuses on the 2D case for
simplicity, CAL is designed to scale to 3D dose distribu-
tions. The sparsity-inducing properties of the Adaptive
Lasso provide an inherent advantage when moving
to higher dimensions, as it identifies only those vox-
els with significant causal effects, effectively reducing
dimensionality. This is particularly important for radio-
therapy applications, where the curse of dimensionality
becomes more pronounced when transitioning from 2D,
(N2) pixels,to 3D,(N3) voxels,where N represents the
number of pixels or voxels along each dimension.Mean-
while, the number of available patient observations,nobs,
typically remains limited in clinical settings.

Computational Complexity
The computational complexity of these estimation meth-
ods varies considerably. Computing the closed-form
solution for each linear regression is dominated by
matrix inversion, which has a time complexity of (p3).
Pixel/voxel-wise approaches require solving approxi-
mately Nd separate regressions, where d represents
the dimensionality of the dose distribution (e.g., d =
2 for 2D), resulting in a worst-case complexity of
(p3Nd). In contrast, CAL and causal regression with-
out sparsity involve a single regression with substantially
higher feature dimensionality (approximately Nd fea-
tures), resulting in a higher complexity of (N3d).
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JENKINS ET AL. 5

TABLE 1 The table of parameter values to be tested in this
simulation.

Parameters Values to test

nobs 50, 100, 500

Nx, Ny 10, 25

𝜎2
UDij

3e−12, 3e−2, 3e−1, 3

MGP 3e−12, 3e−2, 3e−1, 3

𝜎2
GP 3e−12, 3e−2, 3e−1, 3

𝜎2
L 3e−12, 3e−2, 3e−1, 3

Note: Each possible combination of these parameters will be tested for all esti-
mations methods.The parameter nobs refers to the number of patients simulated,
Nx, Ny is the number of pixels in the x- and y-directions, respectively,𝜎2

UDij
is the

variance of the independent noise at each pixel (held constant across all pixels),
MGP is the magnitude of the Gaussian process,𝜎2

GP is the variance of the radial
basis function kernel used in the Gaussian process, and 𝜎2

L is the variance used
to generate Lx and Ly ; set-up uncertainty shifts in x- and y-directions.

While appearing formidable, gradient descent is often
employed instead of finding the closed-form solution
to achieve better scalability. For CAL, gradient descent
would significantly reduce the computational complexity
to (mnNd), where m is the number of gradient descent
steps, making it more similar to the complexity order of
pixel/voxel-wise approaches.

2.4 Performance measures

For each estimation method, Monte Carlo estimates
of the ATE at each pixel will be calculated as �̂�ij =

1∕nsim
∑nsim

k=1 �̂�ijk , where �̂�ijk is the ATE estimate at each
pixel for the kth repetition of the simulation. This will
be used to form Monte Carlo estimate arrays, 𝜽 = {�̂�ij}.
This will be repeated for each possible combination of
simulation parameters shown in Table 1.

As the interest is in whether the estimation method
can make unbiased estimates of 𝜽, bias is selected as
a performance measure. Specifically, the bias at each
pixel will be calculated and visualized. The bias array is
defined as 𝐁 = {Bij|i ∈ [1,… , Nx], j ∈ [1,… , Ny ]} where,

Bij = 𝔼[�̂�ij ] − 𝜃ij ≈
1

nsim

nsim∑
k=1

�̂�ijk − 𝜃ij . (5)

As a global metric to compare different simulation
setups, the sum of MSE across all pixels, MSEtot, will
be used. This is defined as

MSEtot =

Nx∑
i=1

Ny∑
j=1

MSEij , (6)

where,

MSEij = 𝔼[(�̂�ij − 𝜃ij)2] ≈
1

nsim

nsim∑
k=1

(
�̂�ijk − 𝜃ij

)2
. (7)

These performance metrics were selected for their
relevance to causal effect estimation in radiotherapy.
MSEtot provides a comprehensive global assessment
capturing both bias and variance components across all
pixels,while the bias array offers spatial insight into sys-
tematic estimation errors. This combination evaluates
both overall performance and location-specific accu-
racy, which is crucial for identifying anatomical regions
with dose-response relationships.While alternative met-
rics such as Mean Absolute Error (MAE) or sparsity
recovery metrics (precision/recall) could be employed,
our chosen metrics directly assess the primary goal of
voxel-based analysis:accurate estimation of continuous
causal effects across the spatial domain.

3 RESULTS

Figure 4a,b shows the global performance, MSEtot, of
each estimation method (1) pixel-wise planned,(2) pixel-
wise delivered, (3) pixel-wise CAL, (4) CAL and (5) the
causal regression without sparsity; where (1) and (2)
represent state-of -the-art voxel-based methods. MSEtot
is shown for different values of sample sizes (nobs)
and treatment uncertainty parameters for dosimetric
uncertainty (𝜎2

UDij
), anatomical motion (MGP and 𝜎2

GP),

and setup uncertainty (𝜎2
L), where Figure 4a,b shows

results at a low resolution of 10 × 10 pixels and a higher
resolution of 25 × 25 pixels, respectively.

Across all parametrizations of sample sizes and
treatment uncertainties in Figure 4a,b, we find that
all CAL-based estimators achieve consistently lower
MSEtot than pixel-wise planned and pixel-wise deliv-
ered methods. This is highlighted by performances
of MSEtot < 1 × 102 for 10 × 10 resolution, compared
to approximately 1 × 106 for pixel-wise planned and
pixel-wise delivered methods; and performances of
MSEtot between 1.3 × 103 and 1 × 105 for 25 × 25 reso-
lution, compared to approximately 1 × 108 for pixel-wise
planned and 1 × 107 for pixel-wise delivered methods.
The best-performing CAL and pixel-wise CAL estima-
tors achieved MSEtot = 0.450 and MSEtot = 0.452 for
10 × 10 resolution, respectively, and MSEtot = 1323.3
and MSEtot = 2016.2 for 25 × 25 resolution, respectively.
This represents a consistent improvement of approxi-
mately four orders of magnitude across both resolutions.

This shows that the increasing number of pixels has
had an effect on accuracy. At a resolution of 10 × 10
pixels, the causal regression without sparsity performed
with the lowest MSEtot of all methods when nobs =
500 and 𝜎2

UDij
= 3. However, the global performance

of the causal regression without sparsity displayed a
strong dependence on nobs and treatment uncertainties,
whereas the methods with sparsity did not. In addition,
the causal regression without sparsity failed to converge
at the higher resolution of 25 × 25 pixels and is therefore
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6 JENKINS ET AL.

F IGURE 4 Line plots of MSEtot against values of MGP ,𝜎2
GP and 𝜎2

L for (a) Nx, Ny = 10 and (b) Nx, Ny = 25. Colors represent values of nobs.

The rows represent different values of 𝜎2
UDij

, with the exact value labeled. The columns represent the results of the estimation methods.

not included in Figure 4b. This can be attributed to the
absence of sparsity regularization and the lack of con-
trol over multi-collinear features within the adjustment
set. On the other hand, CAL performed with consistently
low MSEtot and showed a little drop in global perfor-
mance across all parametrizations of sample sizes and
treatment uncertainties. This highlights the utility of a
sparsity-inducing Adaptive Lasso to estimate causal
effects in the high-dimensional setting.

Figure 5 represents the local performance as bias
maps for each estimation method for nobs = 500 and
across different parametrizations treatment uncertain-
ties,at a resolution of 10 × 10 pixels.Firstly, it is observed
that the pixel-wise delivered method utilizing delivered
dose can estimate the ATE with lower bias as treat-
ment uncertainties increase. The bias at each pixel for
the causal regression without sparsity reduces as treat-
ment uncertainties increase.Our method,CAL,performs
well over all parametrizations, unlike the causal regres-
sion without sparsity and the pixel-wise CAL,where bias
showed stronger dependencies on treatment uncertain-
ties. In addition, when the treatment uncertainties are
all set to 3 × 10−12, that is, when the delivered dose
distribution is approximately equal to the planned dose
distribution, CAL handles the high degree of multi-
collinearity between variables in the adjustment set
(dose at adjacent pixels) well. This is unlike the causal
regression without sparsity, where the bias map con-
tains much larger values. Interestingly, CAL has a very
low bias in the regions where the estimand is zero

and a larger bias in the regions where the estimand is
non-zero; which could allow regions of dose response
to be accurately identified. This reflects the Adaptive
Lasso’s oracle property of consistency in variable selec-
tion. However, utilization of the ridge regression in our
method does bias parameter estimates where parame-
ters are deemed important.The same observations hold
for the bias maps produced by all estimation methods for
nobs = 500 and 25 × 25 pixels, as shown in Figure 6.

These results demonstrate the substantial per-
formance advantages of causal inference-based
approaches over traditional voxel-based regression
methods across multiple simulation settings. The com-
parative analysis across all five estimation methods
shows that explicitly modeling the causal structure
with appropriate adjustment sets leads to significantly
improved estimation accuracy,with the sparsity-inducing
CAL methods maintaining consistent performance even
at higher resolutions and with smaller sample sizes.

4 DISCUSSION

In this work, a sparse estimator (the Adaptive Lasso
within Pearl’s causal framework), CAL, has been pro-
posed to estimate the treatment effects of each com-
ponent of a high-dimensional treatment space. The
methodology successfully recovers unbiased, spatial,
dose response functions from simulated radiotherapy
data. Leveraging the Adaptive Lasso and its ora-
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JENKINS ET AL. 7

F IGURE 5 Visualizations of the Monte Carlo estimates of the bias array,𝐁, of each estimation method for the simulation run with different
parametrizations of 𝜎2

UDij
, MGP ,𝜎2

GP and 𝜎2
L , with values shown above each sub-figure as {𝜎2

UDij
, MGP,𝜎2

GP,𝜎2
L}. Results are for constant values of

nobs = 500, and Nx, Ny = 10. The columns represent the results of the estimation methods.
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8 JENKINS ET AL.

F IGURE 6 Visualizations of the Monte Carlo estimates of the bias array,𝐁, of each estimation method for the simulation run with different
parametrizations of 𝜎2

UDij
, MGP ,𝜎2

GP and 𝜎2
L , with values shown above each sub-figure as {𝜎2

UDij
, MGP,𝜎2

GP,𝜎2
L}. Results are for constant values of

nobs = 500, and Nx, Ny = 25. The columns represent the results of the estimation methods.
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JENKINS ET AL. 9

cle properties in our exemplar problem from radio-
therapy has allowed us to simultaneously identify
regions within the high-dimensional treatment with non-
zero dose response and estimate the ATE of the
treatment components on an outcome. Our compari-
son of estimation methods reveals that conventional
voxel-based approaches, by ignoring confounding fac-
tors, fail to account for the personalized nature of
radiotherapy treatment planning. CAL addresses this
limitation while leveraging sparsity to improve estimation
efficiency, particularly in higher-dimensional settings.

Voxel-based analysis originated in neuroimaging17

before being adapted to radiotherapy, with sparse sta-
tistical models following a similar path.18,19 Whilst
not a first introduction of causal inference to radio-
therapy, this work is the first introduction of causal
inference to the voxel-based analysis. Previous causal
approaches such as Nabi et al.’s20 are not appli-
cable to voxel-based analysis where features greatly
exceed observations. Their approach of representing
high-dimensional treatments with low-dimensional rep-
resentations that preserve cause-effect relationships
faces interpretability challenges21 when mapping back
to original features; a crucial requirement for iden-
tifying anatomical regions with dose response. Our
sparse causal inference method offers new insights into
causal mechanisms within complex imaging data while
maintaining interpretability.

Our simulation captured key complexities of radiother-
apy treatment outcome data, though several simplifying
assumptions were made. We assumed no interaction
between delivered dose values across voxels, consis-
tent with concepts of functional sub-units in organs
introduced by Schultheiss et al.22 and Withers et al.23

We also assumed constant tumor and organ shapes,
ignoring potential confounding from segmentation vari-
ations that could mediate clinical factors. While our
SCM used linear outcome generation, clinical relation-
ships are likely non-linear, potentially requiring non-
parametric sparse methods like the Sparse Bayesian
Causal Forest24 to capture heterogeneous treatment
effects.

For real-world application, our approach requires
further development. Future work should incorporate
additional clinical variables affecting delivered dose
beyond VO, MO and VT , such as dose-volume his-
togram statistics from multiple OARs. The delivered
dose’s random component (UDij

) enables causal infer-
ence and can be estimated using techniques like
those of Shelley et al.25 For clinical data with more
complex relationships, sensitivity analysis could verify
the assumed DAG’s appropriateness before identifying
adjustment sets using Pearl’s criteria.Extensions to han-
dle segmentation-based confounding may benefit from
causal representation learning approaches,26 enabling
CAL to analyze real patient data while accounting for
these complexities.

Although demonstrated in 2D, extending CAL to 3D
dose distributions is straightforward from a method-
ological perspective. For clinical implementation with
full 3D datasets, computational efficiency could be
enhanced through multi-resolution approaches, where
initial analysis at lower resolution identifies regions of
interest for more detailed investigation. Additionally,
anatomical knowledge could be incorporated through
structured sparsity constraints, leveraging the fact
that dose-response relationships often occur in con-
tiguous regions rather than isolated voxels. These
extensions would preserve CAL’s theoretical advan-
tages while making it computationally feasible for the
substantially higher dimensionality of full 3D clinical
dose distributions.

CAL offers several key clinical benefits for radiother-
apy: (1) more accurate identification of radiosensitive
regions by accounting for confounding factors that
conventional methods ignore; (2) improved treatment
personalization through precise mapping of critical
subregions; (3) potential identification of patient sub-
groups with differential sensitivity profiles; and (4) more
reliable guidance for adaptive radiotherapy by distin-
guishing causal from correlative relationships.To realize
these benefits, future work should apply CAL to clin-
ical toxicity data, addressing additional factors includ-
ing patient-specific anatomical variations, inter-observer
segmentation variability, additional clinical covariates,
and non-linear dose-response relationships. The signif-
icant performance improvements demonstrated in our
controlled simulations provide a strong foundation for
these clinical applications.

While this work focuses on causal effect estima-
tion at Pearl’s intervention level,8 future research could
explore counterfactuals; the highest level of Pearl’s
causal ladder. Extending CAL to generate counterfac-
tual outcomes for individuals would enable prediction
under hypothetical interventions, potentially identifying
optimal radiotherapy treatments for individual patients.
This progression from intervention to counterfactual
analysis, combined with extensions to full 3D dose
distributions through multi-resolution approaches and
structured sparsity constraints, represents a promising
direction for personalized radiotherapy that maintains
CAL’s theoretical advantages while addressing the
computational challenges of higher-dimensional clinical
data.
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